Quantitative Social Science Methods, I, Lecture Notes: Anchoring Vignettes for Interpersonally Incomparable Survey Responses

Gary King
Institute for Quantitative Social Science
Harvard University

August 17, 2020

1GaryKing.org
Introduction

A Nonparametric Method

A Parametric Method

Illustrations
Readings

- "Enhancing the Validity and Cross-cultural Comparability of Measurement in Survey Research" by Gary King, Christopher J.L. Murray, Joshua A. Salomon, and Ajay Tandon, American Political Science Review, 2004

- "Comparing Incomparable Survey Responses: Evaluating and Selecting Anchoring Vignettes" by Gary King and Jonathan Wand, Political Analysis, 2007

- "Improving Anchoring Vignettes: Designing Surveys to Correct Interpersonal Incomparability" by Daniel Hopkins and Gary King, Public Opinion Quarterly, 2010

- "Engaging Private and Information Technology in a Digital Age" by National Research Council, j.mp/PrivInfoAge, 2007: p.86ff

GaryKing.org/vign
Readings

- “Enhancing the Validity and Cross-cultural Comparability of Measurement in Survey Research” Gary King; Christopher J.L. Murray; Joshua A. Salomon; and Ajay Tandon, *American Political Science Review*, 2004

garyking.org/vign
Readings

- “Enhancing the Validity and Cross-cultural Comparability of Measurement in Survey Research” Gary King; Christopher J.L. Murray; Joshua A. Salomon; and Ajay Tandon, *American Political Science Review*, 2004

GaryKing.org/vign
Readings

- “Enhancing the Validity and Cross-cultural Comparability of Measurement in Survey Research” Gary King; Christopher J.L. Murray; Joshua A. Salomon; and Ajay Tandon, *American Political Science Review*, 2004

GaryKing.org/vign
Readings

- “Enhancing the Validity and Cross-cultural Comparability of Measurement in Survey Research” Gary King; Christopher J.L. Murray; Joshua A. Salomon; and Ajay Tandon, *American Political Science Review*, 2004
- “Engaging Private and Information Technology in a Digital Age” National Research Council, j.mp/PrivInfoAge, 2007: p.86ff

GaryKing.org/vign
Anchoring Vignettes Address Two Problems

• Big concepts we can define only by example
 Illustrations: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, …

• The usual advice: You don't have a methodological problem. Get a theory and we'll know what to measure.

• Result of more concreteness: more reliability, no more validity

• Incomparability in Survey Responses ("DIF")
 Chinese report having more political efficacy than Americans

• The most common measure of health — "How healthy are you? (Excellent, Good, Fair, Poor)"
 — often correlates negatively with actual health (Amaryta Sen, 2002)

• Ethiopians and Danes report being equally healthy

• "Individuals understand the 'same' questions in vastly different ways." (Brady, 1985)
Anchoring Vignettes Address Two Problems

- Big concepts we can define only by example
Anchoring Vignettes Address Two Problems

- Big concepts we can define only by example
 - Illustrations: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...

- Incomparability in Survey Responses ("DIF")
- Chinese report having more political efficacy than Americans
- The most common measure of health — "How healthy are you? (Excellent, Good, Fair, Poor)" — often correlates negatively with actual health (Amaryta Sen, 2002)
- Ethiopians and Danes report being equally healthy
- “Individuals understand the 'same' questions in vastly different ways.” (Brady, 1985)
Anchoring Vignettes Address Two Problems

• Big concepts we can define only by example
 • **Illustrations**: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 • **The usual advice**: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
• Big concepts we can define only by example
 • Illustrations: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 • The usual advice: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
 • Result of more concreteness: more reliability, no more validity
Anchoring Vignettes Address Two Problems

• Big concepts we can define only by example
 • Illustrations: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 • The usual advice: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
 • Result of more concreteness: more reliability, no more validity

• Incomparability in Survey Responses (“DIF”)
Anchoring Vignettes Address Two Problems

- Big concepts we can define only by example
 - Illustrations: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 - The usual advice: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
 - Result of more concreteness: more reliability, no more validity

- Incomparability in Survey Responses (“DIF”)
 - Chinese report having more political efficacy than Americans
Anchoring Vignettes Address Two Problems

- **Big concepts we can define only by example**
 - **Illustrations**: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 - **The usual advice**: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
 - **Result of more concreteness**: more reliability, no more validity

- **Incomparability in Survey Responses (“DIF”)**
 - Chinese report having more political efficacy than Americans
 - The most common measure of health — “How healthy are you? (Excellent, Good, Fair, Poor)”
Anchoring Vignettes Address Two Problems

• Big concepts we can define only by example
 • Illustrations: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 • The usual advice: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
 • Result of more concreteness: more reliability, no more validity

• Incomparability in Survey Responses (“DIF”)
 • Chinese report having more political efficacy than Americans
 • The most common measure of health — “How healthy are you? (Excellent, Good, Fair, Poor)” — often correlates negatively with actual health (Amaryta Sen, 2002)
Anchoring Vignettes Address Two Problems

• Big concepts we can define only by example
 • Illustrations: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 • The usual advice: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
 • Result of more concreteness: more reliability, no more validity

• Incomparability in Survey Responses (“DIF”)
 • Chinese report having more political efficacy than Americans
 • The most common measure of health — “How healthy are you? (Excellent, Good, Fair, Poor)” — often correlates negatively with actual health (Amaryta Sen, 2002)
 • Ethiopians and Danes report being equally healthy
Anchoring Vignettes Address Two Problems

- **Big concepts we can define only by example**
 - **Illustrations**: Freedom, efficacy, pornography, health, compactness, democracy, intelligence, ...
 - **The usual advice**: You don’t have a methodological problem. Get a theory and we’ll know what to measure.
 - **Result of more concreteness**: more reliability, no more validity

- **Incomparability in Survey Responses (“DIF”)**
 - Chinese report having more political efficacy than Americans
 - The most common measure of health — “How healthy are you? (Excellent, Good, Fair, Poor)” — often correlates negatively with actual health (Amaryta Sen, 2002)
 - Ethiopians and Danes report being equally healthy
 - “Individuals understand the ‘same’ questions in vastly different ways.” (Brady, 1985)
Anchoring Vignettes: Political Efficacy Through Voting

How much say [does ‘name’ / do you] have in getting the government to address issues that interest [him / her / you]?

(a) Unlimited say, (b) A lot of say, (c) Some say, (d) Little say, (e) No say at all
Anchoring Vignettes: Political Efficacy Through Voting

- “[Alison] lacks clean drinking water. She and her neighbors are supporting an opposition candidate in the forthcoming elections that has promised to address the issue. It appears that so many people in her area feel the same way that the opposition candidate will defeat the incumbent representative.”

How much say [does ‘name’ / do you] have in getting the government to address issues that interest [him / her / you]?

(a) Unlimited say, (b) A lot of say, (c) Some say, (d) Little say, (e) No say at all
Anchoring Vignettes: Political Efficacy Through Voting

• “[Alison] lacks clean drinking water. She and her neighbors are supporting an opposition candidate in the forthcoming elections that has promised to address the issue. It appears that so many people in her area feel the same way that the opposition candidate will defeat the incumbent representative.”

• “[Jane] lacks clean drinking water because the government is pursuing an industrial development plan. In the campaign for an upcoming election, an opposition party has promised to address the issue, but she feels it would be futile to vote for the opposition since the government is certain to win.”

How much say [does ‘name’ / do you] have in getting the government to address issues that interest [him / her / you]?
(a) Unlimited say, (b) A lot of say, (c) Some say, (d) Little say, (e) No say at all
Anchoring Vignettes: Political Efficacy Through Voting

• “[Alison] lacks clean drinking water. She and her neighbors are supporting an opposition candidate in the forthcoming elections that has promised to address the issue. It appears that so many people in her area feel the same way that the opposition candidate will defeat the incumbent representative.”

• “[Jane] lacks clean drinking water because the government is pursuing an industrial development plan. In the campaign for an upcoming election, an opposition party has promised to address the issue, but she feels it would be futile to vote for the opposition since the government is certain to win.”

• “[Moses] lacks clean drinking water. He would like to change this, but he can’t vote, and feels that no one in the government cares about this issue. So he suffers in silence, hoping something will be done in the future.”

How much say [does ‘name’ / do you] have in getting the government to address issues that interest [him / her / you]?
(a) Unlimited say, (b) A lot of say, (c) Some say, (d) Little say, (e) No say at all
Introduction

A Nonparametric Method

A Parametric Method

Illustrations
Who has More Political Efficacy: R_1 or R_2?

A Nonparametric Method
Who has More Political Efficacy: R_1 or R_2?

- Quiz: What does *varying vignette assessments* tell us?
Who has More Political Efficacy: R_1 or R_2?

- Quiz: What does *varying vignette assessments* tell us? DIF
Who has More Political Efficacy: R_1 or R_2?

- Quiz: What does *varying vignette assessments* tell us? DIF
- Quiz: How do we know true vignette assessments are fixed over respondents?
Who has More Political Efficacy: R_1 or R_2?

Quiz: What does varying vignette assessments tell us? DIF

Quiz: How do we know true vignette assessments are fixed over respondents? We create the anchors (Alison, Jane, Moses)!
Formalizing A Nonparametric Methodology

Define self-assessment answers relative to vignettes answers.

For respondents who rank vignettes, $z_{i1} < z_{i2} < \cdots < z_{iJ}$, $C_i = \begin{cases} 1 & \text{if } y_i < z_{i1} \\ 2 & \text{if } y_i = z_{i1} \\ 3 & \text{if } z_{i1} < y_i < z_{i2} \\ \vdots & \vdots \\ 2J+1 & \text{if } y_i > z_{iJ} \end{cases}$

Apportion C_i equally among tied vignette categories (This is wrong, but simple; we will improve shortly)

Treat vignette ranking inconsistencies as ties

Requires vignettes and self-assessments asked of all

(A parametric method to come doesn't)
Formalizing A Nonparametric Methodology

- Define self-assessment answers *relative* to vignettes answers.
Formalizing A Nonparametric Methodology

- Define self-assessment answers *relative* to vignettes answers.
- For respondents who rank vignettes, $z_{i1} < z_{i2} < \cdots < z_{iJ},$

\[
C_i = \begin{cases}
1 & \text{if } y_i < z_{i1} \\
2 & \text{if } y_i = z_{i1} \\
3 & \text{if } z_{i1} < y_i < z_{i2} \\
\vdots & \vdots \\
2J + 1 & \text{if } y_i > z_{iJ}
\end{cases}
\]
Formalizing A Nonparametric Methodology

- Define self-assessment answers \textit{relative} to vignettes answers.
- For respondents who rank vignettes, \(z_{i1} < z_{i2} < \cdots < z_{iJ} \),

\[
C_i = \begin{cases}
1 & \text{if } y_i < z_{i1} \\
2 & \text{if } y_i = z_{i1} \\
3 & \text{if } z_{i1} < y_i < z_{i2} \\
\vdots & \vdots \\
2J + 1 & \text{if } y_i > z_{iJ}
\end{cases}
\]

- Apportion \(C \) equally among tied vignette categories
Formalizing A Nonparametric Methodology

- Define self-assessment answers *relative* to vignettes answers.
- For respondents who rank vignettes, $z_{i1} < z_{i2} < \cdots < z_{iJ}$,

\[
C_i = \begin{cases}
1 & \text{if } y_i < z_{i1} \\
2 & \text{if } y_i = z_{i1} \\
3 & \text{if } z_{i1} < y_i < z_{i2} \\
\vdots & \vdots \\
2J + 1 & \text{if } y_i > z_{iJ}
\end{cases}
\]

- Apportion C equally among tied vignette categories
- (This is wrong, but simple; we will improve shortly)
Formalizing A Nonparametric Methodology

- Define self-assessment answers *relative* to vignettes answers.
- For respondents who rank vignettes, \(z_{i1} < z_{i2} < \cdots < z_{iJ} \),

\[
C_i = \begin{cases}
1 & \text{if } y_i < z_{i1} \\
2 & \text{if } y_i = z_{i1} \\
3 & \text{if } z_{i1} < y_i < z_{i2} \\
\vdots & \vdots \\
2J + 1 & \text{if } y_i > z_{iJ}
\end{cases}
\]

- Apportion \(C \) equally among tied vignette categories
- (This is wrong, but simple; we will improve shortly)
- Treat vignette ranking inconsistencies as ties
Formalizing A Nonparametric Methodology

- Define self-assessment answers *relative* to vignettes answers.
- For respondents who rank vignettes, \(z_{i1} < z_{i2} < \cdots < z_{iJ} \),

\[
C_i = \begin{cases}
1 & \text{if } y_i < z_{i1} \\
2 & \text{if } y_i = z_{i1} \\
3 & \text{if } z_{i1} < y_i < z_{i2} \\
\vdots & \vdots \\
2J + 1 & \text{if } y_i > z_{iJ}
\end{cases}
\]

- Apportion \(C \) equally among tied vignette categories
- (This is wrong, but simple; we will improve shortly)
- Treat vignette ranking inconsistencies as ties
- Requires vignettes and self-assessments asked of all
Formalizing A Nonparametric Methodology

- Define self-assessment answers *relative* to vignettes answers.
- For respondents who rank vignettes, $z_{i1} < z_{i2} < \cdots < z_{iJ}$,

\[
C_i = \begin{cases}
1 & \text{if } y_i < z_{i1} \\
2 & \text{if } y_i = z_{i1} \\
3 & \text{if } z_{i1} < y_i < z_{i2} \\
\vdots & \vdots \\
2J + 1 & \text{if } y_i > z_{iJ}
\end{cases}
\]

- Apportion C equally among tied vignette categories
- (This is wrong, but simple; we will improve shortly)
- Treat vignette ranking inconsistencies as ties
- Requires vignettes and self-assessments asked of all
- (A parametric method to come doesn’t)
Measurement Assumptions

- **Response Consistency**
 - Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
 - I.e., DIF occurs across respondents, not across questions for any one respondent

- **Vignette Equivalence**
 - The actual level for any vignette is the same for all respondents
 - The quantity being estimated exists
 - The scale being tapped is perceived as unidimensional

- **In other words:**
 - we allow response-category DIF but assume stem question equivalence
Measurement Assumptions

• Response Consistency
Measurement Assumptions

- **Response Consistency**
 - Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
Measurement Assumptions

- **Response Consistency**
 - Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
 - I.e., DIF occurs across respondents, not across questions for any one respondent
Measurement Assumptions

- **Response Consistency**
 - Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
 - I.e., DIF occurs across respondents, not across questions for any one respondent

- **Vignette Equivalence**
Measurement Assumptions

- **Response Consistency**
 - Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
 - I.e., DIF occurs across respondents, not across questions for any one respondent

- **Vignette Equivalence**
 - The actual level for any vignette is the same for all respondents
Measurement Assumptions

- **Response Consistency**
 - Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
 - I.e., DIF occurs across respondents, not across questions for any one respondent

- **Vignette Equivalence**
 - The actual level for any vignette is the same for all respondents
 - The quantity being estimated exists
Measurement Assumptions

• **Response Consistency**
 • Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
 • I.e., DIF occurs across respondents, not across questions for any one respondent

• **Vignette Equivalence**
 • The actual level for any vignette is the same for all respondents
 • The quantity being estimated exists
 • The scale being tapped is perceived as unidimensional
Measurement Assumptions

- **Response Consistency**
 - Each respondent uses the self-assessment and vignette categories in approximately the same way across questions
 - I.e., DIF occurs across respondents, not across questions for any one respondent

- **Vignette Equivalence**
 - The actual level for any vignette is the same for all respondents
 - The quantity being estimated exists
 - The scale being tapped is perceived as unidimensional

- **In other words**: we allow response-category DIF but assume stem question equivalence
Comparing Political Efficacy in Mexico and China

Mexico

Opposition leader Vicente Fox elected president. 71-year rule of PRI Party ends. Peaceful transition of power begins.

China

How much say do you have getting government to address issues that interest you?
Comparing Political Efficacy in Mexico and China

Mexico

Opposition leader Vicente Fox elected president. 71-year rule of PRI Party ends. Peaceful transition of power begins.
Comparing Political Efficacy in Mexico and China

Mexico

Opposition leader Vicente Fox elected president. 71-year rule of PRI Party ends. Peaceful transition of power begins.

China

How much say do you have getting government to address issues that interest you?
Nonparametric Estimates of Political Efficacy

observed categorical self-assessments

C, our nonparametric DIF-corrected estimate of the same distribution
Ties and Inconsistencies Produce *Ranges*

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>(y < z_1)</td>
<td>(y = z_1)</td>
<td>(z_1 < y < z_2)</td>
<td>(y = z_2)</td>
<td>(y > z_2)</td>
</tr>
</tbody>
</table>

Scalars:
- \(y < z_1 < z_2\)
- \(\{T_1\}\)
- \(\{T_2\}\)
- \(\{T_3\}\)
- \(\{T_4\}\)
- \(\{T_5\}\)

Ties:
- \(y < z_1 = z_2\) \(\{T_1\}\)
- \(y = z_1 = z_2\) \(\{T_{2,3,4}\}\)
- \(z_1 < y = z_2\) \(\{T_5\}\)

Inconsistencies:
- \(y < z_2 < z_1\) \(\{T_1\}\)
- \(y = z_2 < z_1\) \(\{T_{1,2,3,4}\}\)
- \(z_2 < y < z_1\) \(\{T_{1,2,3,4,5}\}\)
- \(z_2 < z_1 < y\) \(\{T_5\}\)
Ties and Inconsistencies Produce *Ranges*

<table>
<thead>
<tr>
<th>Survey</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>$y < z_1$</td>
</tr>
<tr>
<td>2:</td>
<td>$y = z_1$</td>
</tr>
<tr>
<td>3:</td>
<td>$z_1 < y < z_2$</td>
</tr>
<tr>
<td>4:</td>
<td>$y = z_2$</td>
</tr>
<tr>
<td>5:</td>
<td>$y > z_2$</td>
</tr>
</tbody>
</table>

C
Ties and Inconsistencies Produce *Ranges*

Survey 1: 2: 3: 4: 5:
Responses $y < z_1$ $y = z_1$ $z_1 < y < z_2$ $y = z_2$ $y > z_2$ C

Scalars:

$y < z_1 < z_2$ T $\{1\}$
Ties and Inconsistencies Produce *Ranges*

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>$y < z_1$</td>
<td>$y = z_1$</td>
<td>$z_1 < y < z_2$</td>
<td>$y = z_2$</td>
<td>$y > z_2$</td>
</tr>
</tbody>
</table>

Scalars:

- $y < z_1 < z_2$
- $y = z_1 < z_2$
- $y < z_1 = z_2$
- $y = z_1 < z_2$
- $y = z_1 < z_2$
- $y < z_1 < z_2$
- $y = z_1 < z_2$
- $y > z_2$

- C

Ties:

- $y < z_1 = z_2$
- $y = z_1 = z_2$
- $y < z_1 < z_2$

Inconsistencies:

- $y < z_1 = z_2$
- $y = z_1 < z_2$
- $y > z_2$
- $y = z_1 < z_2$
- $y > z_2$

- C
Ties and Inconsistencies Produce *Ranges*

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>$y < z_1$</td>
<td>$y = z_1$</td>
<td>$z_1 < y < z_2$</td>
<td>$y = z_2$</td>
<td>$y > z_2$</td>
</tr>
</tbody>
</table>

Scalars:

- $y < z_1 < z_2$
 T
 \{1\}
- $y = z_1 < z_2$
 T
 \{2\}
- $z_1 < y < z_2$
 T
 \{3\}
Ties and Inconsistencies Produce Ranges

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>$y < z_1$</td>
<td>$y = z_1$</td>
<td>$z_1 < y < z_2$</td>
<td>$y = z_2$</td>
<td>$y > z_2$</td>
</tr>
</tbody>
</table>

Scalars:

- $y < z_1 < z_2$
- $y = z_1 < z_2$
- $z_1 < y < z_2$
- $z_1 < y = z_2$

- $T{1}$
- $T{2}$
- $T{3}$
- $T{4}$

Ties:

- $y < z_1 = z_2$
- $y = z_1 = z_2$

- $T T{1}$
- $T T{2,3,4}$

Inconsistencies:

- $y < z_2 < z_1$
- $y = z_2 < z_1$
- $z_2 < y < z_1$
- $z_2 < y = z_1$

- $T T{1,2,3,4}$
- $T T{2,3,4,5}$
- $T T{5}$
Ties and Inconsistencies Produce *Ranges*

<table>
<thead>
<tr>
<th>Survey</th>
<th>1: y < z₁</th>
<th>2: y = z₁</th>
<th>3: z₁ < y < z₂</th>
<th>4: y = z₂</th>
<th>5: y > z₂</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>y < z₁</td>
<td>y = z₁</td>
<td>z₁ < y < z₂</td>
<td>y = z₂</td>
<td>y > z₂</td>
<td></td>
</tr>
</tbody>
</table>

Scalars:

1. \(y < z₁ \) \(z₁ < z₂ \) \(T \) \{1\}
2. \(y = z₁ \) \(z₁ < z₂ \) \(T \) \{2\}
3. \(z₁ < y < z₂ \) \(T \) \{3\}
4. \(z₁ < y = z₂ \) \(T \) \{4\}
5. \(z₁ < z₂ < y \) \(T \) \{5\}
Ties and Inconsistencies Produce *Ranges*

Survey Responses

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>$y < z_1$</td>
<td>$y = z_1$</td>
<td>$z_1 < y < z_2$</td>
<td>$y = z_2$</td>
<td>$y > z_2$</td>
</tr>
</tbody>
</table>

Scalars:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y < z_1 < z_2$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y = z_1 < z_2$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_1 < y < z_2$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_1 < y = z_2$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_1 < z_2 < y$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ties:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y < z_1 = z_2$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y = z_1 = z_2$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_1 < z_2 < y$</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ties and Inconsistencies Produce *Ranges*

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>(y < z_1)</td>
<td>(y = z_1)</td>
<td>(z_1 < y < z_2)</td>
<td>(y = z_2)</td>
<td>(y > z_2)</td>
</tr>
</tbody>
</table>

Scalars:

\[
\begin{align*}
y < z_1 < z_2 & \quad T \{1\} \\
y = z_1 < z_2 & \quad T \{2\} \\
z_1 < y < z_2 & \quad T \{3\} \\
z_1 < y = z_2 & \quad T \{4\} \\
z_1 < z_2 < y & \quad T \{5\}
\end{align*}
\]

Ties:

\[
\begin{align*}
y < z_1 = z_2 & \quad T \{1\}
\end{align*}
\]
Ties and Inconsistencies Produce \textit{Ranges}

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>$y < z_1$</td>
<td>$y = z_1$</td>
<td>$z_1 < y < z_2$</td>
<td>$y = z_2$</td>
<td>$y > z_2$</td>
</tr>
</tbody>
</table>

Scalars:

- $y < z_1 < z_2$: T \{1\}
- $y = z_1 < z_2$: T \{2\}
- $z_1 < y < z_2$: T \{3\}
- $z_1 < y = z_2$: T \{4\}
- $z_1 < z_2 < y$: T \{5\}

Ties:

- $y < z_1 = z_2$: T \{1\}
- $y = z_1 = z_2$: T \{2,3,4\}
Ties and Inconsistencies Produce Ranges

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>(y < z_1)</td>
<td>(y = z_1)</td>
<td>(z_1 < y < z_2)</td>
<td>(y = z_2)</td>
<td>(y > z_2)</td>
</tr>
</tbody>
</table>

Scalars:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Survey</th>
<th>Ties</th>
<th>({})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y < z_1 < z_2)</td>
<td>T</td>
<td></td>
<td>({1})</td>
</tr>
<tr>
<td>(y = z_1 < z_2)</td>
<td>T</td>
<td></td>
<td>({2})</td>
</tr>
<tr>
<td>(z_1 < y < z_2)</td>
<td>T</td>
<td></td>
<td>({3})</td>
</tr>
<tr>
<td>(z_1 < y = z_2)</td>
<td>T</td>
<td></td>
<td>({4})</td>
</tr>
<tr>
<td>(z_1 < z_2 < y)</td>
<td>T</td>
<td></td>
<td>({5})</td>
</tr>
</tbody>
</table>

Ties:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Survey</th>
<th>Ties</th>
<th>({})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y < z_1 = z_2)</td>
<td>T</td>
<td></td>
<td>({1})</td>
</tr>
<tr>
<td>(y = z_1 = z_2)</td>
<td>T</td>
<td>T</td>
<td>({2,3,4})</td>
</tr>
<tr>
<td>(z_1 = z_2 < y)</td>
<td>T</td>
<td></td>
<td>({5})</td>
</tr>
</tbody>
</table>
Ties and Inconsistencies Produce Ranges

<table>
<thead>
<tr>
<th>Survey</th>
<th>Responses</th>
<th>Scalars:</th>
<th>Ties:</th>
<th>Inconsistencies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>$y < z_1$</td>
<td>$y < z_1 < z_2$</td>
<td>$y < z_1 = z_2$</td>
<td>$y < z_1 < z_2$</td>
</tr>
<tr>
<td>2:</td>
<td>$y = z_1$</td>
<td>$y = z_1 < z_2$</td>
<td>$y = z_1 = z_2$</td>
<td>$y = z_1 < z_2$</td>
</tr>
<tr>
<td>3:</td>
<td>$z_1 < y < z_2$</td>
<td>$z_1 < y < z_2$</td>
<td>$z_1 < y = z_2$</td>
<td>$z_1 < y < z_2$</td>
</tr>
<tr>
<td>4:</td>
<td>$y = z_2$</td>
<td>$z_1 < y = z_2$</td>
<td>$z_1 < y < z_2$</td>
<td>$y = z_2 < z_1$</td>
</tr>
<tr>
<td>5:</td>
<td>$y > z_2$</td>
<td>$z_1 < y < z_2$</td>
<td>$z_1 < y < z_2$</td>
<td>$y > z_2$</td>
</tr>
</tbody>
</table>

C
Ties and Inconsistencies Produce Ranges

<table>
<thead>
<tr>
<th>Survey Responses</th>
<th>1: $y < z_1$</th>
<th>2: $y = z_1$</th>
<th>3: $z_1 < y < z_2$</th>
<th>4: $y = z_2$</th>
<th>5: $y > z_2$</th>
</tr>
</thead>
</table>

Scalars:

- $y < z_1 < z_2$ T {1}
- $y = z_1 < z_2$ T {2}
- $z_1 < y < z_2$ T {3}
- $z_1 < y = z_2$ T {4}
- $z_1 < z_2 < y$ T {5}

Ties:

- $y < z_1 = z_2$ T {1}
- $y = z_1 = z_2$ T T {2,3,4}
- $z_1 = z_2 < y$ T {5}

Inconsistencies:

- $y < z_2 < z_1$ T {1}
Ties and Inconsistencies Produce Ranges

Survey Responses

<table>
<thead>
<tr>
<th>Survey</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>y < z₁</td>
<td>y = z₁</td>
<td>z₁ < y < z₂</td>
<td>y = z₂</td>
<td>y > z₂</td>
</tr>
</tbody>
</table>

Scalars:

y < z₁ < z₂	T	
y = z₁ < z₂		
z₁ < y < z₂		
z₁ < y = z₂		
z₁ < z₂ < y		

Ties:

y < z₁ = z₂	T	
y = z₁ = z₂		
z₁ = z₂ < y		

Inconsistencies:

y < z₂ < z₁	T	
y = z₂ < z₁		
y = z₁ < z₂		

A Nonparametric Method
Ties and Inconsistencies Produce Ranges

<table>
<thead>
<tr>
<th>Survey</th>
<th>Responses</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y < z_1$</td>
<td>$y = z_1$</td>
<td>$z_1 < y < z_2$</td>
<td>$y = z_2$</td>
<td>$y > z_2$</td>
<td>$y > z_2$</td>
<td></td>
</tr>
</tbody>
</table>

Scalars:

- $y < z_1 < z_2$ \(\text{T}\) \{1\}
- $y = z_1 < z_2$ \(\text{T}\) \{2\}
- $z_1 < y < z_2$ \(\text{T}\) \{3\}
- $z_1 < y = z_2$ \(\text{T}\) \{4\}
- $z_1 < z_2 < y$ \(\text{T}\) \{5\}

Ties:

- $y < z_1 = z_2$ \(\text{T}\) \{1\}
- $y = z_1 = z_2$ \(\text{T}\) \(\text{T}\) \{2,3,4\}
- $z_1 = z_2 < y$ \(\text{T}\) \{5\}

Inconsistencies:

- $y < z_2 < z_1$ \(\text{T}\) \{1\}
- $y = z_2 < z_1$ \(\text{T}\) \(\text{T}\) \{1,2,3,4\}
- $z_2 < y < z_1$ \(\text{T}\) \(\text{T}\) \{1,2,3,4,5\}
Ties and Inconsistencies Produce Ranges

Survey Responses

<table>
<thead>
<tr>
<th>Survey</th>
<th>Responses</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>y < z₁</td>
<td>y = z₁</td>
<td>z₁ < y < z₂</td>
<td>y = z₂</td>
<td>y > z₂</td>
<td></td>
</tr>
</tbody>
</table>

Scalars:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y < z₁ < z₂</th>
<th>y = z₁ < z₂</th>
<th>z₁ < y < z₂</th>
<th>y = z₂</th>
<th>z₁ < z₂ < y</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y = z₁ < z₂</th>
<th>z₁ < y = z₂</th>
<th>z₁ < z₂ < y</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y < z₁ = z₂</th>
<th>z₁ = z₂ < y</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{3}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y < z₁ = z₂</th>
<th>y = z₁ = z₂</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{4}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>z₁ = z₂ < y</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{5}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ties:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y < z₁ = z₂</th>
<th>y = z₁ = z₂</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y = z₁ = z₂</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{2,3,4}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>z₁ = z₂ < y</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{5}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inconsistencies:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y < z₂ < z₁</th>
<th>y = z₂ < z₁</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>y = z₂ < z₁</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{1,2,3,4}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>z₂ < y < z₁</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{1,2,3,4,5}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>z₂ < y = z₁</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{2,3,4,5}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>z₂ < z₁ < y</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{5}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Likelihood for Scalar or Vector Responses

• Define an unobserved variable:
 \[Y_i \sim \text{Normal}(x_i \beta, 1) \]

• With observation mechanism, for scalar \(C \), same as ordered probit:
 \[C_i = c \text{ if } \tau_{c-1} \leq Y_i < \tau_c \]

• Probability of observing category \(c \), for \(X = x_0 \):
 \[\Pr(C = c | x_0) = \int_{\tau_{c-1}}^{\tau_c} \text{Normal}(y | x_0 \beta, 1) \, dy \]

• Observation mechanism for vector valued \(C \):
 \[C_i = c \text{ if } \tau_{\min}(c) - 1 \leq Y_i < \tau_{\max}(c) \]

• Quiz: Do you know how to form the likelihood function?
A Likelihood for Scalar or Vector Responses

Parametric likelihood used in a nonparametric methodology
A Likelihood for Scalar or Vector Responses

Parametric likelihood used in a nonparametric methodology

- Define an unobserved variable: $Y_i \sim \text{Normal}(x_i \beta, 1)$
Define an unobserved variable: $Y_i \sim \text{Normal}(x_i\beta, 1)$

With observation mechanism, for scalar C, same as ordered probit: $C_i = c \text{ if } \tau_{c-1} \leq Y_i < \tau_c$
A Likelihood for Scalar or Vector Responses

Parametric likelihood used in a nonparametric methodology

• Define an unobserved variable: \(Y_i \sim \text{Normal}(x_i \beta, 1) \)
• With observation mechanism, for scalar \(C \), same as ordered probit: \(C_i = c \) if \(\tau_{c-1} \leq Y_i < \tau_c \)
• Probability of observing category \(c \), for \(X = x_0 \):

\[
\Pr(C = c|x_0) = \int_{\tau_{c-1}}^{\tau_c} \text{Normal}(y|x_0 \beta, 1) \, dy
\]
A Likelihood for Scalar or Vector Responses

Parametric likelihood used in a nonparametric methodology

• Define an unobserved variable: $Y_i \sim \text{Normal}(x_i \beta, 1)$

• With observation mechanism, for scalar C, same as ordered probit: $C_i = c$ if $\tau_{c-1} \leq Y_i < \tau_c$

• Probability of observing category c, for $X = x_0$:

$$
Pr(C = c| x_0) = \int_{\tau_{c-1}}^{\tau_c} \text{Normal}(y|x_0 \beta, 1) dy
$$

• Observation mechanism for vector valued C:

$$
C_i = c \quad \text{if} \quad \tau_{\min(c)-1} \leq Y_i < \tau_{\max(c)}
$$
A Likelihood for Scalar or Vector Responses

Parametric likelihood used in a nonparametric methodology

- Define an unobserved variable: $Y_i \sim \text{Normal}(x_i \beta, 1)$
- With observation mechanism, for scalar C, same as ordered probit: $C_i = c$ if $\tau_{c-1} \leq Y_i < \tau_c$
- Probability of observing category c, for $X = x_0$:

$$\Pr(C = c| x_0) = \int_{\tau_{c-1}}^{\tau_c} \text{Normal}(y|x_0 \beta, 1) \, dy$$

- Observation mechanism for vector valued C:

$$C_i = c \quad \text{if} \quad \tau_{\min(c) - 1} \leq Y_i < \tau_{\max(c)}$$

- Quiz: Do you know how to form the likelihood function?
Introduction

A Nonparametric Method

A Parametric Method

Illustrations
Categorizing Years of Age

- Elderly
- Middle aged
- Young adult
- Child

If thresholds vary: categorical answers are meaningless

Quiz: In Ordered Logit, can we subscript τ_i by person?

Quiz: What information would identify the τ_i's?

A parametric model works by estimating the thresholds
Categorizing Years of Age

Respondent 1

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Elderly</td>
</tr>
<tr>
<td>80</td>
<td>Elderly</td>
</tr>
<tr>
<td>70</td>
<td>Middle aged</td>
</tr>
<tr>
<td>60</td>
<td>Middle aged</td>
</tr>
<tr>
<td>50</td>
<td>Young adult</td>
</tr>
<tr>
<td>40</td>
<td>Young adult</td>
</tr>
<tr>
<td>30</td>
<td>Child</td>
</tr>
<tr>
<td>20</td>
<td>Child</td>
</tr>
<tr>
<td>10</td>
<td>Child</td>
</tr>
<tr>
<td>0</td>
<td>Child</td>
</tr>
</tbody>
</table>

Respondent 2

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Elderly</td>
</tr>
<tr>
<td>80</td>
<td>Middle aged</td>
</tr>
<tr>
<td>70</td>
<td>Middle aged</td>
</tr>
<tr>
<td>60</td>
<td>Young adult</td>
</tr>
<tr>
<td>50</td>
<td>Young adult</td>
</tr>
<tr>
<td>40</td>
<td>Young adult</td>
</tr>
<tr>
<td>30</td>
<td>Child</td>
</tr>
<tr>
<td>20</td>
<td>Child</td>
</tr>
<tr>
<td>10</td>
<td>Child</td>
</tr>
<tr>
<td>0</td>
<td>Child</td>
</tr>
</tbody>
</table>

• If thresholds vary: categorical answers are meaningless
• Quiz: In Ordered Logit, can we subscript \(\tau_i \) by person?
• Quiz: What information would identify the \(\tau_i \)'s?
• A parametric model works by estimating the thresholds
Categorizing Years of Age

• If thresholds vary: categorical answers are meaningless
Categorizing Years of Age

- If thresholds vary: categorical answers are meaningless
- Quiz: In Ordered Logit, can we subscript τ_i by person?

Respondent 1

<table>
<thead>
<tr>
<th>Age</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Elderly</td>
</tr>
<tr>
<td>80</td>
<td>Elderly</td>
</tr>
<tr>
<td>70</td>
<td>Middle aged</td>
</tr>
<tr>
<td>60</td>
<td>Middle aged</td>
</tr>
<tr>
<td>50</td>
<td>Young adult</td>
</tr>
<tr>
<td>40</td>
<td>Young adult</td>
</tr>
<tr>
<td>30</td>
<td>Child</td>
</tr>
<tr>
<td>20</td>
<td>Child</td>
</tr>
<tr>
<td>10</td>
<td>Child</td>
</tr>
<tr>
<td>0</td>
<td>Child</td>
</tr>
</tbody>
</table>

Respondent 2

<table>
<thead>
<tr>
<th>Age</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Elderly</td>
</tr>
<tr>
<td>80</td>
<td>Middle aged</td>
</tr>
<tr>
<td>70</td>
<td>Middle aged</td>
</tr>
<tr>
<td>60</td>
<td>Young adult</td>
</tr>
<tr>
<td>50</td>
<td>Young adult</td>
</tr>
<tr>
<td>40</td>
<td>Child</td>
</tr>
<tr>
<td>30</td>
<td>Child</td>
</tr>
<tr>
<td>20</td>
<td>Child</td>
</tr>
<tr>
<td>10</td>
<td>Child</td>
</tr>
<tr>
<td>0</td>
<td>Child</td>
</tr>
</tbody>
</table>
Categorizing Years of Age

If thresholds vary: categorical answers are meaningless

Quiz: In Ordered Logit, can we subscript τ_i by person?

Quiz: What information would identify the τ_i’s?
Categorizing Years of Age

- If thresholds vary: categorical answers are meaningless
- Quiz: In Ordered Logit, can we subscript \(\tau_i \) by person?
- Quiz: What information would identify the \(\tau_i \)'s?
- A parametric model works by estimating the thresholds
Statistical Model: Visual Summary

Actual:

Perceived:

Reported:

- An ordinal probit model,
An ordinal probit model, with varying thresholds,
An ordinal probit model, with varying thresholds, a vignette for identification (with the same γ),
Statistical Model: Visual Summary

Actual: $\theta_1 \ldots \theta_J$

Perceived: $Z_{t1}^* \ldots Z_{tJ}^* \ldots Z_{tJ}^*$

Reported: $z_{t1} \ldots z_{tJ} \ldots z_{tJ}$

Y_{i1}^*

$X_i \beta \rightarrow \mu_i$

$V_t \gamma \rightarrow \pi_t$

$\pi_t \leftarrow V_t$

$V_i \gamma \rightarrow \tau_i$

$V_i \gamma \rightarrow \tau_i$

Y_{i1}^*

Vignettes

Self-Assessment

• An ordinal probit model,
• with varying thresholds,
• a vignette for identification (with the same γ),
• more vignettes for better discrimination,
Statistical Model: Visual Summary

Actual: $\theta_1 \ldots \theta_J$

Perceived: $Z_{\ell 1}^* \ldots Z_{\ell J}^*$

Reported: $z_{\ell 1} \ldots z_{\ell J}$

- An ordinal probit model, η_i
- with varying thresholds, θ_i
- a vignette for identification (with the same γ), β
- more vignettes for better discrimination, μ_i
- optional multiple self-assessment questions for more efficiency, ν_i

Vignettes

Self-Assessment

A Parametric Method
Statistical Model: Visual Summary

- An ordinal probit model,
- with varying thresholds,
- a vignette for identification (with the same γ),
- more vignettes for better discrimination,
- optional multiple self-assessment questions for more efficiency,
- and an optional random effect.
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- **Actual:** \(\mu_i = X_i \beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)

- **Perceived:**
 - \(Y_{i1} \sim N(\mu_i, 1)\)
 - \(Y_{iS} \sim N(\mu_i, 1)\)

- **Reported (observation mechanism):**
 - \(y_{i1} = k\) if \(\tau_{k} - 1 \leq Y_{i1} < \tau_{k}\)
 - \(\vdots\)
 - \(y_{iS} = k\) if \(\tau_{k} - 1 \leq Y_{is} < \tau_{k}\)

 where \(\tau_{1} = \gamma V_i\), \(\tau_{k} = \tau_{k-1} + e_{k}\) \((k = 2, \ldots, K_s)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)

- **Actual:** \(\theta_1, \ldots, \theta_J\)

- **Perceived:** \(Z_{\ell1} \sim N(\theta_1, \sigma^2)\)
 - \(Z_{\ellJ} \sim N(\theta_J, \sigma^2)\)

- **Reported:** \(z_{\ellj} = k\) if \(\tau_{k} - 1 \leq Z_{\ellj} < \tau_{k}\),

 where \(\tau_{1} = \gamma V_{\ell}\), \(\tau_{k} = \tau_{k-1} + e_{k}\) \((k = 2, \ldots, K_s)\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- Actual: \(\mu_i = x_i\beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)

- Perceived: \(Y^*_i \sim N(\mu_i, 1)\)

- Reported (observation mechanism):
 \(y_i = k\) if \(\tau_{k-1} - 1 < Y^*_i < \tau_k\)

- Where \(\tau_1 = \gamma_1 V_i\), \(\tau_k = \tau_{k-1} + e_{\gamma_k} V_i\) \((k = 2, \ldots, K)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)

- Actual: \(\theta_1, \ldots, \theta_J\)

- Perceived: \(Z^*_\ell \sim N(\theta_1, \sigma^2)\)

- Reported: \(z_{\ell j} = k\) if \(\tau_{k-1} - 1 \leq Z^*_\ell < \tau_k\),

- Where \(\tau_1 = \gamma_1 V_{\ell}\), \(\tau_k = \tau_{k-1} + e_{\gamma_k} V_{\ell}\) \((k = 2, \ldots, K)\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- Actual: \(\mu_i = X_i \beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- Actual: \(\mu_i = X_i \beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)
- Perceived: \(Y_{i1}^* \sim N(\mu_i, 1)\) \(\ldots\) \(Y_{iS}^* \sim N(\mu_i, 1)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- **Actual:** \(\mu_i = X_i \beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)
- **Perceived:** \(Y_{i1}^* \sim N(\mu_i, 1) \quad \ldots \quad Y_{iS}^* \sim N(\mu_i, 1)\)
- **Reported** (observation mechanism):

\[
\begin{align*}
y_{i1} &= k \quad \text{if } \tau_{i1}^{k-1} \leq Y_{i1}^* < \tau_{i1}^k \\
\vdots \\
y_{iS} &= k \quad \text{if } \tau_{is}^{k-1} \leq Y_{is}^* < \tau_{is}^k
\end{align*}
\]

Vignette Model Component \((\ell = 1, \ldots, N)\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- **Actual:** \(\mu_i = X_i\beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)
- **Perceived:** \(Y_{i1}^* \sim N(\mu_i, 1)\) \(\ldots\) \(Y_{iS}^* \sim N(\mu_i, 1)\)
- **Reported** (observation mechanism):

\[
\begin{align*}
 y_{i1} &= k & \text{if } \tau_{i1}^{k-1} \leq Y_{i1}^* < \tau_{i1}^k \\
 & \vdots \\
 y_{iS} &= k & \text{if } \tau_{is}^{k-1} \leq Y_{is}^* < \tau_{is}^k
\end{align*}
\]

- where \(\tau_{is}^1 = \gamma_1 V_i, \quad \tau_{is}^k = \tau_{is}^{k-1} + e^{y_k} V_i, \quad (k = 2, \ldots, K_s)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- **Actual:** \(\mu_i = X_i \beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)
- **Perceived:** \(Y_i^* \sim N(\mu_i, 1)\) \(\ldots\) \(Y_{iS}^* \sim N(\mu_i, 1)\)
- **Reported** (observation mechanism):

\[
y_{i1} = k \quad \text{if} \quad \tau_{i1}^{k-1} \leq Y_{i1}^* < \tau_{i1}^k \\
\vdots \\
y_{iS} = k \quad \text{if} \quad \tau_{iS}^{k-1} \leq Y_{iS}^* < \tau_{iS}^k
\]

- where \(\tau_{is}^1 = y_1 V_i\), \(\tau_{is}^k = \tau_{is}^{k-1} + e^{y_k} V_i\), \((k = 2, \ldots, K_s)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)

- **Actual:** \(\theta_1, \ldots, \theta_f\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- **Actual:** \(\mu_i = X_i \beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)
- **Perceived:** \(Y_{i1}^* \sim N(\mu_i, 1)\) \quad \ldots \quad Y_{iS}^* \sim N(\mu_i, 1)\)
- ** Reported (observation mechanism):**

\[
\begin{align*}
y_{i1} &= k \quad \text{if} \quad \tau_{i1}^{k-1} \leq Y_{i1}^* < \tau_{i1}^k \\
& \quad \vdots \\
y_{iS} &= k \quad \text{if} \quad \tau_{is}^{k-1} \leq Y_{is}^* < \tau_{is}^k
\end{align*}
\]

- where \(\tau_{is}^1 = y_1 V_i\), \(\tau_{is}^k = \tau_{is}^{k-1} + e^{y_k} V_i\), \((k = 2, \ldots, K_s)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)

- **Actual:** \(\theta_1, \ldots, \theta_J\)
- **Perceived:** \(Z_{\ell1}^* \sim N(\theta_1, \sigma^2)\) \quad \ldots \quad Z_{\ellJ}^* \sim N(\theta_J, \sigma^2)\)
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- **Actual:** \(\mu_i = X_i \beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)
- **Perceived:** \(Y_{i1}^* \sim N(\mu_i, 1)\) \(\ldots\) \(Y_{iS}^* \sim N(\mu_i, 1)\)
- **Reported** (observation mechanism):

 \[
 y_{i1} = k \quad \text{if } \tau_{i1}^{k-1} \leq Y_{i1}^* < \tau_{i1}^k \\
 \vdots \\
 y_{iS} = k \quad \text{if } \tau_{is}^{k-1} \leq Y_{is}^* < \tau_{is}^k
 \]

 where \(\tau_{1s} = \gamma_1 V_i\), \(\tau_{is}^k = \tau_{is}^{k-1} + \epsilon \gamma_k V_i\), \((k = 2, \ldots, K_s)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)

- **Actual:** \(\theta_1, \ldots, \theta_J\)
- **Perceived:** \(Z_{\ell1}^* \sim N(\theta_1, \sigma^2)\) \(\ldots\) \(Z_{\ellJ}^* \sim N(\theta_J, \sigma^2)\)
- **Reported:** \(z_{\ell j} = k \quad \text{if } \tau_{\ell1}^{k-1} \leq Z_{\ell j}^* < \tau_{\ell1}^k\),
Self-Assessment Model Component \((i = 1, \ldots, n)\)

- **Actual:** \(\mu_i = X_i\beta + \eta_i\), with random effect \(\eta_i \sim N(0, \omega^2)\)
- **Perceived:**
 \(Y_{i1}^* \sim N(\mu_i, 1)\) \hspace{1cm} \ldots \hspace{1cm} \(Y_{iS}^* \sim N(\mu_i, 1)\)
- **Reported** (observation mechanism):
 \[
 y_{i1} = k \quad \text{if} \quad \tau_{i1}^{k-1} \leq Y_{i1}^* < \tau_{i1}^k \\
 \vdots \\
 y_{iS} = k \quad \text{if} \quad \tau_{is}^{k-1} \leq Y_{is}^* < \tau_{is}^k \\
 \]
 where \(\tau_{is}^1 = \gamma_1 V_i\), \(\tau_{is}^k = \tau_{is}^{k-1} + e^{\gamma_k V_i}\), \((k = 2, \ldots, K_s)\)

Vignette Model Component \((\ell = 1, \ldots, N)\)

- **Actual:** \(\theta_1, \ldots, \theta_J\)
- **Perceived:**
 \(Z_{\ell1}^* \sim N(\theta_1, \sigma^2)\) \hspace{1cm} \ldots \hspace{1cm} \(Z_{\ellJ}^* \sim N(\theta_J, \sigma^2)\)
- **Reported:**
 \(z_{\ell j} = k \quad \text{if} \quad \tau_{\ell1}^{k-1} \leq Z_{\ell j}^* < \tau_{\ell1}^k\),
- **where** \(\tau_{\ell s}^1 = \gamma_1 V_\ell\), \(\tau_{\ell s}^k = \tau_{\ell s}^{k-1} + e^{\gamma_k V_\ell}\), \((k = 2, \ldots, K_s)\)
Introduction

A Nonparametric Method

A Parametric Method

Illustrations
Self-Assessment v. Medical Tests

Self-Assessment: In the last 30 days, how much difficulty did [you/name] have in seeing and recognizing a person you know across the road (i.e. from a distance of about 20 meters)?

Illustrations
Self-Assessment: In the last 30 days, how much difficulty did [you/name] have in seeing and recognizing a person you know across the road (i.e. from a distance of about 20 meters)? (A) none, (B) mild, (C) moderate, (D) severe, (E) extreme/cannot do
Self-Assessment: In the last 30 days, how much difficulty did [you/name] have in seeing and recognizing a person you know across the road (i.e. from a distance of about 20 meters)? (A) none, (B) mild, (C) moderate, (D) severe, (E) extreme/cannot do

The Snellen Eye Chart Test:
Fixing DIF in Self-Assessments of Visual (Non)acuity

<table>
<thead>
<tr>
<th></th>
<th>Snellen Eye Chart</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (s.e.)</td>
<td>μ (s.e.)</td>
<td>μ (s.e.)</td>
</tr>
<tr>
<td>Slovakia</td>
<td>8.006 (.272)</td>
<td>.660 (.127)</td>
<td>.286 (.129)</td>
</tr>
<tr>
<td>China</td>
<td>10.780 (.148)</td>
<td>.673 (.073)</td>
<td>.749 (.081)</td>
</tr>
<tr>
<td>Difference</td>
<td>−2.774 (.452)</td>
<td>−.013 (.053)</td>
<td>−.463 (.053)</td>
</tr>
</tbody>
</table>

Medical test: Slovakians see much better than the Chinese

Ordinal probit: no difference

Chopit: same result as the medical test (on a different scale)

(Better to calculate QOIs! The articles explain how.)
Fixing DIF in Self-Assessments of Visual (Non)acuity

<table>
<thead>
<tr>
<th></th>
<th>Snellen Eye Chart</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (s.e.)</td>
<td>μ (s.e.)</td>
<td>μ (s.e.)</td>
</tr>
<tr>
<td>Slovakia</td>
<td>8.006 (.272)</td>
<td>.660 (.127)</td>
<td>.286 (.129)</td>
</tr>
<tr>
<td>China</td>
<td>10.780 (.148)</td>
<td>.673 (.073)</td>
<td>.749 (.081)</td>
</tr>
<tr>
<td>Difference</td>
<td>−2.774 (.452)</td>
<td>−.013 (.053)</td>
<td>−.463 (.053)</td>
</tr>
</tbody>
</table>

- **Medical test**: Slovakians see much better than the Chinese
Fixing DIF in Self-Assessments of Visual (Non)acuity

<table>
<thead>
<tr>
<th></th>
<th>Snellen Eye Chart</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>(s.e.)</td>
<td>μ</td>
</tr>
<tr>
<td>Slovakia</td>
<td>8.006</td>
<td>(.272)</td>
<td>.660</td>
</tr>
<tr>
<td>China</td>
<td>10.780</td>
<td>(.148)</td>
<td>.673</td>
</tr>
<tr>
<td>Difference</td>
<td>−2.774</td>
<td>(.452)</td>
<td>−.013</td>
</tr>
</tbody>
</table>

- **Medical test:** Slovakians see much better than the Chinese
- **Ordinal probit:** no difference
Fixing DIF in Self-Assessments of Visual (Non)acuity

<table>
<thead>
<tr>
<th></th>
<th>Snellen Eye Chart</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (s.e.)</td>
<td>μ (s.e.)</td>
<td>μ (s.e.)</td>
</tr>
<tr>
<td>Slovakia</td>
<td>8.006 (.272)</td>
<td>.660 (.127)</td>
<td>.286 (.129)</td>
</tr>
<tr>
<td>China</td>
<td>10.780 (.148)</td>
<td>.673 (.073)</td>
<td>.749 (.081)</td>
</tr>
<tr>
<td>Difference</td>
<td>−2.774 (.452)</td>
<td>−.013 (.053)</td>
<td>−.463 (.053)</td>
</tr>
</tbody>
</table>

- **Medical test**: Slovakians see much better than the Chinese
- **Ordinal probit**: no difference
- **Chopit**: same result as the medical test (on a different scale)
Fixing DIF in Self-Assessments of Visual (Non)acuity

<table>
<thead>
<tr>
<th></th>
<th>Snellen Eye Chart</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (s.e.)</td>
<td>μ (s.e.)</td>
<td>μ (s.e.)</td>
</tr>
<tr>
<td>Slovakia</td>
<td>8.006 (.272)</td>
<td>.660 (.127)</td>
<td>.286 (.129)</td>
</tr>
<tr>
<td>China</td>
<td>10.780 (.148)</td>
<td>.673 (.073)</td>
<td>.749 (.081)</td>
</tr>
<tr>
<td>Difference</td>
<td>−2.774 (.452)</td>
<td>−.013 (.053)</td>
<td>−.463 (.053)</td>
</tr>
</tbody>
</table>

- **Medical test:** Slovakians see much better than the Chinese
- **Ordinal probit:** no difference
- **Chopit:** same result as the medical test (on a different scale)
- (Better to calculate QOIs! The articles explain how.)
Fixing DIF in China and Mexico

Ordered Probit:

Chinese people have more political efficacy than Mexicans.

Chopit:

Chinese people have less political efficacy than Mexicans.

<table>
<thead>
<tr>
<th>Eqn.</th>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>China</td>
<td>0.670</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>age</td>
<td>-0.362</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>male</td>
<td>0.877</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>education</td>
<td>0.004</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Vignettes	𝜃 1	1.393	0.190
	𝜃 2	1.304	0.190
	𝜃 3	0.953	0.189
	𝜃 4	0.902	0.188
	𝜃 5	0.729	0.188

\[\ln \sigma = -0.238 \text{ (0.042)} \]
Fixing DIF in China and Mexico

<table>
<thead>
<tr>
<th>Eqn.</th>
<th>Variable</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coeff. (s.e.)</td>
<td>Coeff. (s.e.)</td>
</tr>
<tr>
<td>μ</td>
<td>China</td>
<td>.670 (.081)</td>
<td>−.362 (.090)</td>
</tr>
<tr>
<td></td>
<td>age</td>
<td>.004 (.003)</td>
<td>.006 (.003)</td>
</tr>
<tr>
<td></td>
<td>male</td>
<td>.087 (.076)</td>
<td>.113 (.081)</td>
</tr>
<tr>
<td></td>
<td>education</td>
<td>.020 (.008)</td>
<td>.019 (.008)</td>
</tr>
<tr>
<td>Vignettes</td>
<td>θ_1</td>
<td>1.393 (.190)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_2</td>
<td>1.304 (.190)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_3</td>
<td>.953 (.189)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_4</td>
<td>.902 (.188)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_5</td>
<td>.729 (.188)</td>
<td></td>
</tr>
<tr>
<td>$\ln \sigma$</td>
<td></td>
<td>−.238 (.042)</td>
<td></td>
</tr>
</tbody>
</table>
Fixing DIF in China and Mexico

<table>
<thead>
<tr>
<th>Eqn.</th>
<th>Variable</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coeff. (s.e.)</td>
<td>Coeff. (s.e.)</td>
</tr>
<tr>
<td>μ</td>
<td>China</td>
<td>.670 (.081)</td>
<td>-.362 (.090)</td>
</tr>
<tr>
<td></td>
<td>age</td>
<td>.004 (.003)</td>
<td>.006 (.003)</td>
</tr>
<tr>
<td></td>
<td>male</td>
<td>.087 (.076)</td>
<td>.113 (.081)</td>
</tr>
<tr>
<td></td>
<td>education</td>
<td>.020 (.008)</td>
<td>.019 (.008)</td>
</tr>
<tr>
<td>Vignettes</td>
<td>θ_1</td>
<td>1.393 (.190)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_2</td>
<td>1.304 (.190)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_3</td>
<td>.953 (.189)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_4</td>
<td>.902 (.188)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_5</td>
<td>.729 (.188)</td>
<td></td>
</tr>
<tr>
<td>ln σ</td>
<td></td>
<td>-.238 (.042)</td>
<td></td>
</tr>
</tbody>
</table>

- **Ordered Probit:** Chinese people have *more* political efficacy than Mexicans
Fixing DIF in China and Mexico

<table>
<thead>
<tr>
<th>Eqn.</th>
<th>Variable</th>
<th>Ordinal Probit</th>
<th>Chopit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coeff. (s.e.)</td>
<td>Coeff. (s.e.)</td>
</tr>
<tr>
<td>μ</td>
<td>China</td>
<td>.670 (.081)</td>
<td>−.362 (.090)</td>
</tr>
<tr>
<td></td>
<td>age</td>
<td>.004 (.003)</td>
<td>.006 (.003)</td>
</tr>
<tr>
<td></td>
<td>male</td>
<td>.087 (.076)</td>
<td>.113 (.081)</td>
</tr>
<tr>
<td></td>
<td>education</td>
<td>.020 (.008)</td>
<td>.019 (.008)</td>
</tr>
<tr>
<td>Vignettes</td>
<td>θ_1</td>
<td>1.393 (.190)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_2</td>
<td>1.304 (.190)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_3</td>
<td>.953 (.189)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_4</td>
<td>.902 (.188)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_5</td>
<td>.729 (.188)</td>
<td></td>
</tr>
<tr>
<td>ln σ</td>
<td></td>
<td>−.238 (.042)</td>
<td></td>
</tr>
</tbody>
</table>

- **Ordered Probit**: Chinese people have *more* political efficacy than Mexicans
- **Chopit**: Chinese people have *less* political efficacy than Mexicans
DIF as Threshold Variation: Mexico v. China
DIF as Threshold Variation: Mexico v. China

Illustrations
• **Self-assessments**: Actual (mean), μ; Perceived y^*
• **Self-assessments**: Actual (mean), \(\mu \); Perceived \(y^* \)

• **Vignette Assessments**: \(\theta_1, \theta_2 \)
Self-assessments: Actual (mean), \(\mu \); Perceived \(y^* \)

Vignette Assessments: \(\theta_1, \theta_2 \)

Thresholds: Chinese have lower standards for satisfying \(\tau_j \)
Summary: Anchoring Vignettes to fix DIF

Assumptions:
- response consistency, vignette equivalence

Probably won’t eliminate all DIF:
- but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones

Reduce expense:
- assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample

If you think you have DIF-free questions:
- you now have the first real opportunity to test that hypothesis.

Whether or not you have DIF:
- vignettes can help us follow standard advice of making questions concrete

Writing vignettes:
- aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.

Other common survey problems:
- Question wording, Accurate translation, Question order, Sampling design, Interview length, Social backgrounds of interviewer and respondent

Other uses:
- Defining concepts you only know when you see illustrations
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
Summary: Anchoring Vignettes to fix DIF

- **Assumptions**: response consistency, vignette equivalence
- **Probably won’t eliminate all DIF**: but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
- **Probably won’t eliminate all DIF:** but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense:** assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
Summary: Anchoring Vignettes to fix DIF

- **Assumptions**: response consistency, vignette equivalence
- **Probably won’t eliminate all DIF**: but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense**: assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions**: you now have the first real opportunity to test that hypothesis.
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
- **Probably won’t eliminate all DIF:** but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense:** assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions:** you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF:** vignettes can help us follow standard advice of making questions concrete
Summary: Anchoring Vignettes to fix DIF

- Assumptions: response consistency, vignette equivalence
- Probably won’t eliminate all DIF: but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- Reduce expense: assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- If you think you have DIF-free questions: you now have the first real opportunity to test that hypothesis.
- Whether or not you have DIF: vignettes can help us follow standard advice of making questions concrete
- Writing vignettes: aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.
Summary: Anchoring Vignettes to fix DIF

- **Assumptions**: response consistency, vignette equivalence
- **Probably won’t eliminate all DIF**: but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense**: assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions**: you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF**: vignettes can help us follow standard advice of making questions concrete
- **Writing vignettes**: aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.
- **Other common survey problems**: Question wording,
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
- **Probably won’t eliminate all DIF:** but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense:** assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions:** you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF:** vignettes can help us follow standard advice of making questions concrete
- **Writing vignettes:** aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.
- **Other common survey problems:** Question wording, Accurate translation,
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
- **Probably won’t eliminate all DIF:** but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense:** assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions:** you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF:** vignettes can help us follow standard advice of making questions concrete
- **Writing vignettes:** aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.
- **Other common survey problems:** Question wording, Accurate translation, Question order,
Summary: Anchoring Vignettes to fix DIF

- **Assumptions**: response consistency, vignette equivalence
- **Probably won’t eliminate all DIF**: but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense**: assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions**: you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF**: vignettes can help us follow standard advice of making questions concrete
- **Writing vignettes**: aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.
- **Other common survey problems**: Question wording, Accurate translation, Question order, Sampling design,
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
- **Probably won’t eliminate all DIF:** but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense:** assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions:** you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF:** vignettes can help us follow standard advice of making questions concrete
- **Writing vignettes:** aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.
- **Other common survey problems:** Question wording, Accurate translation, Question order, Sampling design, Interview length,
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
- **Probably won’t eliminate all DIF:** but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense:** assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions:** you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF:** vignettes can help us follow standard advice of making questions concrete
- **Writing vignettes:** aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.
- **Other common survey problems:** Question wording, Accurate translation, Question order, Sampling design, Interview length, Social backgrounds of interviewer and respondent
Summary: Anchoring Vignettes to fix DIF

- **Assumptions:** response consistency, vignette equivalence
- **Probably won’t eliminate all DIF:** but problems would have to be unrealistically big to make unadjusted measures better than the adjusted ones
- **Reduce expense:** assign each vignette to subsample. E.g., 4 vignettes asked for 1/4 of the sample
- **If you think you have DIF-free questions:** you now have the first real opportunity to test that hypothesis.
- **Whether or not you have DIF:** vignettes can help us follow standard advice of making questions concrete

Writing vignettes: aids in clarification and discovery of domains of concept of interest — even if you do not do a survey.

Other common survey problems: Question wording, Accurate translation, Question order, Sampling design, Interview length, Social backgrounds of interviewer and respondent

Other uses: Defining concepts you only know when you see