Linear Probability, Logit, Probit Models

Interpreting Functional Forms

Alternative Interpretations of Binary Models

General Rules for Presenting and Interpreting Statistical Results
Linear Probability Model

The Model

1. Stochastic component for a binary outcome

\[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i y_i (1 - \pi_i) y_i = \begin{cases} \pi_i & \text{for } y_i = 1 \\ 1 - \pi_i & \text{for } y_i = 0 \end{cases} \]

2. Systematic component

\[\Pr(Y_i = 1|\beta) \equiv \mathbb{E}(Y_i) \equiv \pi_i = x_i \beta \]

3. \(Y_i \) and \(Y_j \) are independent \(\forall i / j \), conditional on \(X \)

Quiz: What's good? What's bad?

But models are approximations.

Maybe ok for middling \(\pi \)?

Unlikely to get uncertainties right.
Linear Probability Model

The Model

1. Stochastic component for a binary outcome

\[Y_i \sim \text{Bernoulli}(y_i | \pi_i) = \pi_i y_i (1 - \pi_i) \]

2. Systematic component

\[\Pr(Y_i = 1 | \beta) = E(Y_i) = \pi_i = x_i \beta \]

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \cdot \)

Quiz: What's good? What's bad?

• for some \(x \), \(\Pr(Y) \not\in [0, 1] \)

• Models are approximations.

• Maybe ok for middling \(\pi \)?

• Unlikely to get uncertainties right.
Linear Probability Model

The Model

1. **Stochastic component** for a binary outcome

\[Y_i \sim \text{Bernoulli}(\pi_i) = \pi_i^{y_i}(1 - \pi_i)^{1 - y_i} = \begin{cases} \pi_i & \text{for } y_i = 1 \\ 1 - \pi_i & \text{for } y_i = 0 \end{cases} \]
The Model

1. **Stochastic component** for a binary outcome

\[Y_i \sim \text{Bernoulli}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases}
\pi_i & \text{for } y = 1 \\
1 - \pi_i & \text{for } y = 0
\end{cases} \]
The Model

1. **Stochastic component** for a binary outcome

\[Y_i \sim \text{Bernoulli}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic component**
Linear Probability Model

The Model

1. **Stochastic component** for a binary outcome

\[Y_i \sim \text{Bernoulli}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases}
\pi_i & \text{for } y = 1 \\
1 - \pi_i & \text{for } y = 0
\end{cases} \]

2. **Systematic component** \(\Pr(Y_i = 1|\beta) \equiv E(Y_i) \equiv \pi_i = x_i\beta \)

Quiz: What's good? What's bad?

For some \(x \), \(\Pr(Y) \notin [0, 1] \)

But models are approximations. Maybe ok for middling \(\pi \)? Unlikely to get uncertainties right.
Linear Probability Model

The Model

1. **Stochastic component** for a binary outcome

 \[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases}
 \pi_i & \text{for } y = 1 \\
 1 - \pi_i & \text{for } y = 0
\end{cases} \]

2. **Systematic component** \(\Pr(Y_i = 1|\beta) \equiv E(Y_i) \equiv \pi_i = x_i\beta \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \)
Linear Probability Model

The Model

1. **Stochastic component** for a binary outcome

\[Y_i \sim \text{Bernoulli}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic component** \(\Pr(Y_i = 1 | \beta) \equiv E(Y_i) \equiv \pi_i = x_i \beta \)

3. \(Y_i \) and \(Y_j \) are **independent** \(\forall i \neq j \), conditional on \(X \)

Quiz: What's good? What's bad?

Model are approximations.

Maybe ok for middling \(\pi \)?

Unlikely to get uncertainties right.
Linear Probability Model

The Model

1. **Stochastic component** for a binary outcome

 \[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i}(1-\pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic component** \(\Pr(Y_i = 1|\beta) \equiv E(Y_i) \equiv \pi_i = x_i\beta \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \)

 - **Quiz:** What’s good? What’s bad?
Linear Probability Model

The Model

1. **Stochastic component** for a binary outcome

 \[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i}(1-\pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1-\pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic component** \(\Pr(Y_i = 1|\beta) \equiv E(Y_i) \equiv \pi_i = x_i\beta \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \)

- Quiz: What’s good? What’s bad?
- for some \(x \), \(\Pr(Y) \notin [0, 1] \)
Linear Probability Model

The Model

1. **Stochastic component** for a binary outcome

 \[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic component** \(\Pr(Y_i = 1|\beta) \equiv E(Y_i) \equiv \pi_i = x_i \beta \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall \; i \neq j \), conditional on \(X \)

- **Quiz:** What’s good? What’s bad?
- for some \(x \), \(\Pr(Y) \notin [0, 1] \)
- But models are approximations. Maybe ok for middling \(\pi \)?
Linear Probability Model

The Model

1. **Stochastic component for a binary outcome**

\[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i}(1-\pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic component**

\[
\Pr(Y_i = 1|\beta) \equiv E(Y_i) \equiv \pi_i = x_i\beta
\]

3. **\(Y_i\) and \(Y_j\) are independent** \(\forall i \neq j\), conditional on \(X\)

- **Quiz:** What’s good? What’s bad?
- for some \(x\), \(\Pr(Y) \notin [0, 1]\)
- But models are approximations. Maybe ok for middling \(\pi\)?
- Unlikely to get uncertainties right
The Logistic Regression (Logit) model

1. Stochastic component

\[Y_i \sim \text{Bernoulli}(\pi_i) = \begin{cases} \pi_i & \text{for } Y_i = 1 \\ 1 - \pi_i & \text{for } Y_i = 0 \end{cases} \]

2. Systematic Component:

\[\pi_i \equiv \Pr(Y_i = 1 | \beta) = \frac{1}{1 + e^{-x_i \beta}} \]

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \).
The Logistic Regression (Logit) model

The Model

1. Stochastic component:

\[Y_i \sim \text{Bernoulli}(\pi_i) = \pi_i^{Y_i} (1 - \pi_i)^{1-Y_i} \]

2. Systematic component:

\[\pi_i \equiv \text{Pr}(Y_i = 1 | \beta) = \frac{1}{1 + e^{-x_i \beta}} \]

3. \(Y_i \) and \(Y_j\) are independent \(\forall i \neq j\), conditional on \(X\).

Quiz: What's good? What's bad?

- \(\text{Pr}(Y) \in [0, 1]\) for any \(Y\)

One change for probit:

\[\pi_i = \Phi(X_i \beta) \]

Could be more flexible; OK for now
The Logistic Regression (Logit) model

The Model

1. Stochastic component

\[Y_i \sim \text{Bernoulli}(\pi_i) = \pi_i \quad \text{for} \quad y_i = 1 \]
\[1 - \pi_i \quad \text{for} \quad y_i = 0 \]

Systematic Component:
\[\pi_i \equiv \Pr(Y_i = 1 | \beta) = \frac{1}{1 + e^{-X_i \beta}} \]

\(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \)•

Quiz: What's good? What's bad?

\[\Pr(y) \in [0, 1] \text{ for any } y \]

One change for probit:
\[\pi_i = \Phi(X_i \beta) \]

Could be more flexible; OK for now
The Logistic Regression (Logit) model

The Model

1. Stochastic component

\[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases}
\pi_i & \text{for } y = 1 \\
1 - \pi_i & \text{for } y = 0
\end{cases} \]
The Logistic Regression (Logit) model

The Model

1. Stochastic component

\[Y_i \sim \text{Bernoulli}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. Systematic Component: \(\pi_i = \Pr(Y_i = 1|\beta) = \frac{1}{1 + e^{-x_i \beta}} \)
The Logistic Regression (Logit) model

The Model

1. **Stochastic component**

 \[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic Component:** \(\pi_i \equiv \Pr(Y_i = 1|\beta) = \frac{1}{1 + e^{-x_i\beta}} \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \)
The Logistic Regression (Logit) model

The Model

1. **Stochastic component**

 \[Y_i \sim \text{Bernoulli}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic Component:** \(\pi_i \equiv \Pr(Y_i = 1 | \beta) = \frac{1}{1 + e^{-x_i \beta}} \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall \ i \neq j \), conditional on \(X \)
The Logistic Regression (Logit) model

The Model

1. Stochastic component

\[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i}(1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. Systematic Component: \(\pi_i \equiv \Pr(Y_i = 1|\beta) = \frac{1}{1+e^{-x_i\beta}} \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \)

Quiz: What’s good? What’s bad?
The Logistic Regression (Logit) model

The Model

1. **Stochastic component**

\[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i}(1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic Component:** \(\pi_i \equiv \Pr(Y_i = 1|\beta) = \frac{1}{1+e^{-x_i\beta}} \)

3. \(Y_i \) and \(Y_j \) are independent \(\forall \ i \neq j \), conditional on \(X \)

- **Quiz:** What’s good? What’s bad?
- \(\Pr(y) \in [0, 1] \) for any \(y \)
The Logistic Regression (Logit) model

The Model

1. **Stochastic component**

\[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i}(1-\pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic Component:** \[\pi_i \equiv \Pr(Y_i = 1|\beta) = \frac{1}{1+e^{-x_i\beta}} \]

3. \(Y_i \) and \(Y_j \) are independent \(\forall \ i \neq j \), conditional on \(X \)

- **Quiz:** What’s good? What’s bad?
- \(\Pr(y) \in [0, 1] \) for any \(y \)
- One change for probit:
 \[\pi_i = \Phi(X_i\beta) \]
The Logistic Regression (Logit) model

The Model

1. **Stochastic component**

\[Y_i \sim \text{Bernoulli}(y_i|\pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} = \begin{cases} \pi_i & \text{for } y = 1 \\ 1 - \pi_i & \text{for } y = 0 \end{cases} \]

2. **Systematic Component:**
\[\pi_i \equiv \Pr(Y_i = 1|\beta) = \frac{1}{1 + e^{-x_i \beta}} \]

3. \(Y_i \) and \(Y_j \) are independent \(\forall i \neq j \), conditional on \(X \)

Quiz: What’s good? What’s bad?

- \(\Pr(y) \in [0, 1] \) for any \(y \)
- One change for probit:
 \[\pi_i = \Phi(X_i \beta) \]
- Could be more flexible; OK for now
The Logit Log-Likelihood

Probability density of all the data

\[P(y \mid \pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}, \]

\[\pi_i = \frac{1}{1 + e^{-x_i \beta}} \]

Log-likelihood

\[\ln L(\beta \mid y) = \sum_{i=1}^{n} \left\{ y_i \ln \pi_i + (1 - y_i) \ln (1 - \pi_i) \right\} = \sum_{i=1}^{n} \left\{ -y_i \ln (1 + e^{-(1 - 2y_i)x_i \beta}) + (1 - y_i) \ln (\frac{1}{1 + e^{-x_i \beta}}) \right\} = -n \sum_{i=1}^{n} \ln (1 + e^{-(1 - 2y_i)x_i \beta}) \]

Quiz: What do we do with this?

How to interpret \(\hat{\beta} \)?

What's the QOI?
The Logit Log-Likelihood

Probability density of all the data
The Logit Log-Likelihood

Probability density of all the data

\[
P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i},
\]
The Logit Log-Likelihood

Probability density of all the data

\[P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i\beta}} \]
The Logit Log-Likelihood

Probability density of all the data

\[P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i\beta}} \]

Log-likelihood

Quiz: What do we do with this?
How to interpret \(\hat{\beta} \)?

What's the QOI?
The Logit Log-Likelihood

Probability density of all the data

\[P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i \beta}} \]

Log-likelihood

\[
\ln L(\beta|y) = \sum_{i=1}^{n} \left\{ y_i \ln \pi_i + (1 - y_i) \ln(1 - \pi_i) \right\}
\]
The Logit Log-Likelihood

Probability density of all the data

\[P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i\beta}} \]

Log-likelihood

\[
\ln L(\beta|y) = \sum_{i=1}^{n} \{ y_i \ln \pi_i + (1 - y_i) \ln(1 - \pi_i) \} \\
= \sum_{i=1}^{n} \left\{ -y_i \ln \left(1 + e^{-x_i\beta}\right) + (1 - y_i) \ln \left(1 - \frac{1}{1 + e^{-x_i\beta}}\right) \right\}
\]
The Logit Log-Likelihood

Probability density of all the data

\[P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i \beta}} \]

Log-likelihood

\[\ln L(\beta|y) = \sum_{i=1}^{n} \left\{ y_i \ln \pi_i + (1 - y_i) \ln(1 - \pi_i) \right\} \]

\[= \sum_{i=1}^{n} \left\{ -y_i \ln \left(1 + e^{-x_i \beta}\right) + (1 - y_i) \ln \left(1 - \frac{1}{1 + e^{-x_i \beta}}\right) \right\} \]

\[= - \sum_{i=1}^{n} \ln \left(1 + e^{(1-2y_i)x_i \beta}\right) \]
The Logit Log-Likelihood

Probability density of all the data

\[P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i\beta}} \]

Log-likelihood

\[\ln L(\beta|y) = \sum_{i=1}^{n} \left\{ y_i \ln \pi_i + (1 - y_i) \ln(1 - \pi_i) \right\} = \sum_{i=1}^{n} \left\{ -y_i \ln \left(1 + e^{-x_i\beta} \right) + (1 - y_i) \ln \left(1 - \frac{1}{1 + e^{-x_i\beta}} \right) \right\} = - \sum_{i=1}^{n} \ln \left(1 + e^{(1-2y_i)x_i\beta} \right) \]

Quiz: What do we do with this?
The Logit Log-Likelihood

Probability density of all the data

\[
P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i \beta}}
\]

Log-likelihood

\[
\ln L(\beta|y) = \sum_{i=1}^{n} \left\{ y_i \ln \pi_i + (1 - y_i) \ln(1 - \pi_i) \right\}
\]

\[
= \sum_{i=1}^{n} \left\{ -y_i \ln \left(1 + e^{-x_i \beta}\right) + (1 - y_i) \ln \left(1 - \frac{1}{1 + e^{-x_i \beta}}\right) \right\}
\]

\[
= -\sum_{i=1}^{n} \ln \left(1 + e^{(1-2y_i)x_i \beta}\right)
\]

Quiz: What do we do with this?
How to interpret \(\hat{\beta}\)?
The Logit Log-Likelihood

Probability density of all the data

\[P(y|\pi) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}, \quad \pi_i = \frac{1}{1 + e^{-x_i\beta}} \]

Log-likelihood

\[\ln L(\beta|y) = \sum_{i=1}^{n} \left\{ y_i \ln \pi_i + (1 - y_i) \ln(1 - \pi_i) \right\} \]

\[= \sum_{i=1}^{n} \left\{ -y_i \ln \left(1 + e^{-x_i\beta}\right) + (1 - y_i) \ln \left(1 - \frac{1}{1 + e^{-x_i\beta}}\right) \right\} \]

\[= -\sum_{i=1}^{n} \ln \left(1 + e^{(1-2y_i)x_i\beta}\right) \]

Quiz: What do we do with this?
How to interpret \(\hat{\beta} \)? What’s the QOI?
Interpreting Functional Forms

Alternative Interpretations of Binary Models

General Rules for Presenting and Interpreting Statistical Results
Graphics to Interpret Functional Forms

- Use theoretical ranges, not observed X's.
- Entire surface plot for a few X's.
- Marginal effects: Hold some variables constant at their means, typical value, or observed values.
- Average effects: Compute effects for every observation and average.
- Be creative; choose graphs for impact.

Interpreting Functional Forms
Graphics to Interpret Functional Forms

- \(X \) horizontally; \(y \) vertically; uncertainty represented
Graphics to Interpret Functional Forms

- X horizontally; y vertically; uncertainty represented
- Use theoretical ranges, not observed X’s
Graphics to Interpret Functional Forms

- X horizontally; y vertically; uncertainty represented
- Use theoretical ranges, not observed X's
- Entire surface plot for a few X's
Graphics to Interpret Functional Forms

- **X** horizontally; **y** vertically; uncertainty represented
- Use theoretical ranges, not observed **X**’s
- Entire surface plot for a few **X**’s
- **Marginal effects**: Hold some variables constant at their means, a typical value, or observed values
Graphics to Interpret Functional Forms

- X horizontally; y vertically; uncertainty represented
- Use theoretical ranges, not observed X’s
- Entire surface plot for a few X’s
- Marginal effects: Hold some variables constant at their means, a typical value, or observed values
- Average effects: compute effects for every observation and average
Graphics to Interpret Functional Forms

- X horizontally; y vertically; uncertainty represented
- Use theoretical ranges, not observed X’s
- Entire surface plot for a few X’s
- Marginal effects: Hold some variables constant at their means, a typical value, or observed values
- Average effects: compute effects for every observation and average
- Be creative; choose graphs for impact
Fitted Values to Interpret Functional Forms

- Calculate fitted values given selected values of X, X_c for "typical" people, person types, regional representatives, stereotypes, etc.
- Compute $\hat{\theta}_c = g(X_c, \hat{\beta})$

- An example for logit: $\hat{\pi}_c = \frac{1}{1 + e^{-X_c \hat{\beta}}}$

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Home</th>
<th>Income</th>
<th>Pr (vote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>Chicago</td>
<td>$33,000$</td>
<td>0.20</td>
</tr>
<tr>
<td>Female</td>
<td>27</td>
<td>New York City</td>
<td>$43,000$</td>
<td>0.28</td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>Madison, WI</td>
<td>$55,000$</td>
<td>0.72</td>
</tr>
</tbody>
</table>

- Include a measure of uncertainty (standard error, confidence interval, etc.) — for any quantity but a probability
- Easy to communicate
- Difficult to be comprehensive
- Better by simulation: point and uncertainty estimation
Fitted Values to Interpret Functional Forms

- Calculate fitted values given selected values of X, X_c for "typical" people, person types, regional representatives, stereotypes, etc.
Fitted Values to Interpret Functional Forms

• Calculate fitted values given selected values of X, X_c for “typical” people, person types, regional representatives, stereotypes, etc.

• Compute $\hat{\theta}_c = g(X_c, \hat{\beta})$
Fitted Values to Interpret Functional Forms

• Calculate fitted values given selected values of X, X_c for “typical” people, person types, regional representatives, stereotypes, etc.

• Compute $\hat{\theta}_c = g(X_c, \hat{\beta})$

• An example for logit: $\hat{\pi}_c = \frac{1}{1 + e^{-X_c \hat{\beta}}}$

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Home</th>
<th>Income</th>
<th>Pr(vote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>Chicago</td>
<td>$33,000$</td>
<td>0.20</td>
</tr>
<tr>
<td>Female</td>
<td>27</td>
<td>New York City</td>
<td>$43,000$</td>
<td>0.28</td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>Madison, WI</td>
<td>$55,000$</td>
<td>0.72</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Include a measure of uncertainty (standard error, confidence interval, etc.) — for any quantity but a probability

Easy to communicate

Difficult to be comprehensive

Better by simulation: point and uncertainty estimation
Fitted Values to Interpret Functional Forms

- Calculate **fitted values** given selected values of X, X_c for “typical” people, person types, regional representatives, stereotypes, etc.
- Compute $\hat{\theta}_c = g(X_c, \hat{\beta})$
- An example for logit: $\hat{\pi}_c = \frac{1}{1 + e^{-X_c \hat{\beta}}}$

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Home</th>
<th>Income</th>
<th>Pr(vote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>Chicago</td>
<td>$33,000$</td>
<td>0.20</td>
</tr>
<tr>
<td>Female</td>
<td>27</td>
<td>New York City</td>
<td>$43,000$</td>
<td>0.28</td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>Madison, WI</td>
<td>$55,000$</td>
<td>0.72</td>
</tr>
</tbody>
</table>

- Include a measure of uncertainty (standard error, confidence interval, etc.) — for any quantity but a probability
Fitted Values to Interpret Functional Forms

• Calculate **fitted values** given selected values of X, X_c for “typical” people, person types, regional representatives, stereotypes, etc.

• Compute $\hat{\theta}_c = g(X_c, \hat{\beta})$

• An example for logit: $\hat{\pi}_c = \frac{1}{1+e^{-X_c\hat{\beta}}}$

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Home</th>
<th>Income</th>
<th>Pr(vote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>Chicago</td>
<td>$33,000$</td>
<td>0.20</td>
</tr>
<tr>
<td>Female</td>
<td>27</td>
<td>New York City</td>
<td>$43,000$</td>
<td>0.28</td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>Madison, WI</td>
<td>$55,000$</td>
<td>0.72</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Include a measure of uncertainty (standard error, confidence interval, etc.) — for any quantity but a probability

• Easy to communicate
Fitted Values to Interpret Functional Forms

- Calculate **fitted values** given selected values of X, X_c for “typical” people, person types, regional representatives, stereotypes, etc.
- Compute $\hat{\theta}_c = g(X_c, \hat{\beta})$
- An example for logit: $\hat{\pi}_c = \frac{1}{1 + e^{-X_c\hat{\beta}}}$

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Home</th>
<th>Income</th>
<th>Pr (vote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>Chicago</td>
<td>$33,000$</td>
<td>0.20</td>
</tr>
<tr>
<td>Female</td>
<td>27</td>
<td>New York City</td>
<td>$43,000$</td>
<td>0.28</td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>Madison, WI</td>
<td>$55,000$</td>
<td>0.72</td>
</tr>
</tbody>
</table>

- Include a measure of uncertainty (standard error, confidence interval, etc.) — for any quantity but a probability
- Easy to communicate
- Difficult to be comprehensive
Fitted Values to Interpret Functional Forms

- Calculate fitted values given selected values of X, X_c for “typical” people, person types, regional representatives, stereotypes, etc.
- Compute $\hat{\theta}_c = g(X_c, \hat{\beta})$
- An example for logit: $\hat{\pi}_c = \frac{1}{1 + e^{-X_c\hat{\beta}}}$

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Home</th>
<th>Income</th>
<th>Pr(vote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>Chicago</td>
<td>$33,000$</td>
<td>0.20</td>
</tr>
<tr>
<td>Female</td>
<td>27</td>
<td>New York City</td>
<td>$43,000$</td>
<td>0.28</td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>Madison, WI</td>
<td>$55,000$</td>
<td>0.72</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Include a measure of uncertainty (standard error, confidence interval, etc.) — for any quantity but a probability
- Easy to communicate
- Difficult to be comprehensive
- Better by simulation: point and uncertainty estimation
First Differences to Interpret Functional Forms

- First differences to interpret functional forms.
- Define \(X_s \) (starting point) and \(X_e \) (ending point) as \(k \times 1 \) vectors of values of \(X \). Usually all values are the same but one.
- First difference:
 - In general:
 \[D = g(X_e, \hat{\beta}) - g(X_s, \hat{\beta}) \]
 - Linear Model:
 \[D = X_e \hat{\beta} - X_s \hat{\beta} \]
 - Logit Model:
 \[D = \frac{1}{1 + e^{-X_e \hat{\beta}}} - \frac{1}{1 + e^{-X_s \hat{\beta}}} \]

- Example:
 - Variable From To First Difference
 - Sex Male → Female 0.05
 - Age 65 → 75 -0.10
 - Home NYC → Madison, WI 0.26
 - Income $35,000 → $75,000 0.14

- Easier by simulation: point and uncertainty estimation.
First Differences to Interpret Functional Forms

• aka Risk Differences (in epidemiology)
First Differences to Interpret Functional Forms

- aka Risk Differences (in epidemiology)
- Define X_s (starting point) and X_e (ending point) as $k \times 1$ vectors of values of X. Usually all values are the same but one.

Example:

<table>
<thead>
<tr>
<th>Variable</th>
<th>From</th>
<th>To</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>0.05</td>
</tr>
<tr>
<td>Age</td>
<td>65</td>
<td>75</td>
<td>-0.10</td>
</tr>
<tr>
<td>Home</td>
<td>NYC</td>
<td>Madison, WI</td>
<td>0.26</td>
</tr>
<tr>
<td>Income</td>
<td>$35,000</td>
<td>$75,000</td>
<td>0.14</td>
</tr>
</tbody>
</table>

- Easier by simulation: point and uncertainty estimation
First Differences to Interpret Functional Forms

- aka Risk Differences (in epidemiology)
- Define X_s (starting point) and X_e (ending point) as $k \times 1$ vectors of values of X. Usually all values are the same but one.
- First difference

<table>
<thead>
<tr>
<th>Variable From To</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Male → Female</td>
<td>0.05</td>
</tr>
<tr>
<td>Age 65 → 75</td>
<td>-0.10</td>
</tr>
<tr>
<td>Home NYC → Madison, WI</td>
<td>0.26</td>
</tr>
<tr>
<td>Income $35,000 → $75,000</td>
<td>0.14</td>
</tr>
</tbody>
</table>
First Differences to Interpret Functional Forms

- aka Risk Differences (in epidemiology)
- Define X_s (starting point) and X_e (ending point) as $k \times 1$ vectors of values of X. Usually all values are the same but one.
- **First difference**
 - In general: $D = g(X_e, \hat{\beta}) - g(X_s, \hat{\beta})$

Example:

<table>
<thead>
<tr>
<th>Variable</th>
<th>From</th>
<th>To</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>0.05</td>
</tr>
<tr>
<td>Age</td>
<td>65</td>
<td>75</td>
<td>-0.10</td>
</tr>
<tr>
<td>Home</td>
<td>NYC</td>
<td>Madison, WI</td>
<td>0.26</td>
</tr>
<tr>
<td>Income</td>
<td>$35,000</td>
<td>$75,000</td>
<td>0.14</td>
</tr>
</tbody>
</table>

- Easier by simulation: point and uncertainty estimation
First Differences to Interpret Functional Forms

• aka Risk Differences (in epidemiology)

• Define X_s (starting point) and X_e (ending point) as $k \times 1$ vectors of values of X. Usually all values are the same but one.

• First difference

 • In general: $D = g(X_e, \hat{\beta}) - g(X_s, \hat{\beta})$

 • Linear Model: $D = X_e\hat{\beta} - X_s\hat{\beta}$

<table>
<thead>
<tr>
<th>Variable From To</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Male → Female</td>
<td>0.05</td>
</tr>
<tr>
<td>Age 65 → 75</td>
<td>-0.10</td>
</tr>
<tr>
<td>Home NYC → Madison, WI</td>
<td>0.26</td>
</tr>
<tr>
<td>Income $35,000 → 75,000</td>
<td>0.14</td>
</tr>
</tbody>
</table>
First Differences to Interpret Functional Forms

- aka Risk Differences (in epidemiology)
- Define X_s (starting point) and X_e (ending point) as $k \times 1$ vectors of values of X. Usually all values are the same but one.
- **First difference**
 - In general: $D = g(X_e, \hat{\beta}) - g(X_s, \hat{\beta})$
 - Linear Model: $D = X_e \hat{\beta} - X_s \hat{\beta}$
 - Logit Model: $D = \frac{1}{1 + e^{-X_e \hat{\beta}}} - \frac{1}{1 + e^{-X_s \hat{\beta}}}$

<table>
<thead>
<tr>
<th>Variable From To</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Male</td>
<td>.05</td>
</tr>
<tr>
<td>Age 65</td>
<td>→ 75</td>
</tr>
<tr>
<td>Home NYC</td>
<td>→ Madison, WI</td>
</tr>
<tr>
<td>Income $35,000</td>
<td>→ $75,000</td>
</tr>
</tbody>
</table>

Easier by simulation: point and uncertainty estimation.
First Differences to Interpret Functional Forms

- aka Risk Differences (in epidemiology)
- Define X_s (starting point) and X_e (ending point) as $k \times 1$ vectors of values of X. Usually all values are the same but one.
- **First difference**
 - In general: $D = g(X_e, \hat{\beta}) - g(X_s, \hat{\beta})$
 - Linear Model: $D = X_e \hat{\beta} - X_s \hat{\beta}$
 - Logit Model: $D = \frac{1}{1 + e^{-X_e \hat{\beta}}} - \frac{1}{1 + e^{-X_s \hat{\beta}}}$

- **Example:**

<table>
<thead>
<tr>
<th>Variable</th>
<th>From</th>
<th>To</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>.05</td>
</tr>
<tr>
<td>Age</td>
<td>65</td>
<td>75</td>
<td>−.10</td>
</tr>
<tr>
<td>Home</td>
<td>NYC</td>
<td>Madison, WI</td>
<td>.26</td>
</tr>
<tr>
<td>Income</td>
<td>$35,000$</td>
<td>$75,000$</td>
<td>.14</td>
</tr>
</tbody>
</table>

- Easier by simulation: point and uncertainty estimation
First Differences to Interpret Functional Forms

- aka Risk Differences (in epidemiology)
- Define X_s (starting point) and X_e (ending point) as $k \times 1$ vectors of values of X. Usually all values are the same but one.
- **First difference**
 - In general: $D = g(X_e, \hat{\beta}) - g(X_s, \hat{\beta})$
 - Linear Model: $D = X_e\hat{\beta} - X_s\hat{\beta}$
 - Logit Model: $D = \frac{1}{1+e^{-X_e\hat{\beta}}} - \frac{1}{1+e^{-X_s\hat{\beta}}}$
- **Example:**

<table>
<thead>
<tr>
<th>Variable</th>
<th>From</th>
<th>To</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>.05</td>
</tr>
<tr>
<td>Age</td>
<td>65</td>
<td>75</td>
<td>−.10</td>
</tr>
<tr>
<td>Home</td>
<td>NYC</td>
<td>Madison, WI</td>
<td>.26</td>
</tr>
<tr>
<td>Income</td>
<td>$35,000</td>
<td>$75,000</td>
<td>.14</td>
</tr>
</tbody>
</table>

- Easier by simulation: point and uncertainty estimation
Good for quick interpretation; probably not for presenting results.

Derivative rule:

$$\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j}$$

Linear:

$$\frac{\partial \mu}{\partial X_j} = \beta_j$$ (unconditional)

Logit:

$$\frac{\partial \pi}{\partial X_j} = \frac{1}{1+e^{-X\beta}} \frac{\partial X \beta}{\partial X_j} = \hat{\beta}_j \hat{\pi} (1 - \hat{\pi})$$

Max value of logit derivative:

$$\hat{\beta} \times 0.5 (1 - 0.5) = \frac{\hat{\beta}}{4}$$

Max value for probit derivative:

$$\hat{\beta} \times 0.4$$

Presented so it's easy to remember; so remember!
Derivative Rules of Thumb to Interpret Functional Forms

- Good for quick interpretation; probably not for presenting results
- Derivative rule: \(\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j} \)
- Linear: \(\frac{\partial \mu}{\partial X_j} = \beta_j \) (unconditional)
- Logit: \(\frac{\partial \pi}{\partial X_j} = \frac{1}{1 + e^{-X \beta}} \frac{\partial X_j}{\partial X_j} = \hat{\beta}_j \hat{\pi}(1 - \hat{\pi}) \)
- Max value of logit derivative: \(\hat{\beta} \times 0.5(1 - \frac{1}{2}) = \hat{\beta} / 4 \)
- Max value for probit derivative: \(\hat{\beta} \times 0.4 \)
- Presented so it’s easy to remember; so remember!
Derivative Rules of Thumb to Interpret Functional Forms

- Good for quick interpretation; probably not for presenting results

\[
\beta \pi (1 - \pi)
\]

\[
\frac{\partial \hat{\pi}}{\partial X_j} = \hat{\beta}_j \hat{\pi} (1 - \hat{\pi})
\]

\[
\max \text{ value of logit derivative: } \hat{\beta} \times 0.5 (1 - 0.5) = \hat{\beta} / 4
\]

\[
\max \text{ value for probit derivative: } \hat{\beta} \times 0.4
\]
Derivative Rules of Thumb to Interpret Functional Forms

- **Good for quick interpretation; probably not for presenting results**
- **Derivative rule:** \(\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j} \)
Derivative Rules of Thumb to Interpret Functional Forms

- Good for quick interpretation; probably not for presenting results
- Derivative rule: \(\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j} \)
- Linear: \(\frac{\partial \mu}{\partial X_j} = \beta_j \) (unconditional)
Derivative Rules of Thumb to Interpret Functional Forms

- Good for quick interpretation; probably not for presenting results
- Derivative rule: $\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j}$
- Linear: $\frac{\partial \mu}{\partial X_j} = \beta_j$ (unconditional)
- Logit: $\frac{\partial \pi}{\partial X_j} = \frac{\partial \frac{1}{1+e^{-X\beta}}}{\partial X_j} = \hat{\beta}_j \hat{\pi}(1 - \hat{\pi})$
Derivative Rules of Thumb to Interpret Functional Forms

- Good for quick interpretation; probably not for presenting results
- Derivative rule: $\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j}$
- Linear: $\frac{\partial \mu}{\partial X_j} = \beta_j$ (unconditional)
- Logit: $\frac{\partial \pi}{\partial X_j} = \frac{\partial \frac{1}{1 + e^{-X \beta}}}{\partial X_j} = \hat{\beta}_j \hat{\pi} (1 - \hat{\pi})$
- Max value of logit derivative: $\hat{\beta} \times 0.5(1 - 0.5) = \hat{\beta}/4$
Derivative Rules of Thumb to Interpret Functional Forms

- Good for quick interpretation; probably not for presenting results

- Derivative rule: \(\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j} \)

- Linear: \(\frac{\partial \mu}{\partial X_j} = \beta_j \) (unconditional)

- Logit: \(\frac{\partial \pi}{\partial X_j} = \frac{\partial}{\partial X_j} \frac{1}{1 + e^{-X\beta}} = \hat{\beta}_j \hat{\pi}(1 - \hat{\pi}) \)

- Max value of logit derivative: \(\hat{\beta} \times 0.5(1 - 0.5) = \hat{\beta}/4 \)

- Max value for probit derivative: \(\hat{\beta} \times 0.4 \)
Derivative Rules of Thumb to Interpret Functional Forms

- Good for quick interpretation; probably not for presenting results

- Derivative rule: \(\frac{\partial \theta}{\partial X_j} = \frac{\partial g(X, \beta)}{\partial X_j} \)

- Linear: \(\frac{\partial \mu}{\partial X_j} = \beta_j \) (unconditional)

- Logit: \(\frac{\partial \pi}{\partial X_j} = \frac{\partial \frac{1}{1+e^{-X\beta}}}{\partial X_j} = \hat{\beta}_j \hat{\pi} (1 - \hat{\pi}) \)

- Max value of logit derivative: \(\hat{\beta} \times 0.5(1 - 0.5) = \hat{\beta}/4 \)

- Max value for probit derivative: \(\hat{\beta} \times 0.4 \)

- Presented so it’s easy to remember; so remember!
Linear Probability, Logit, Probit Models

Interpreting Functional Forms

Alternative Interpretations of Binary Models

General Rules for Presenting and Interpreting Statistical Results
Continuous unobserved variable: Y^*. Health, voting propensity

A model:

$$Y^*_i \sim P(y^*_i | \mu_i)$$

$$\mu_i = x_i \beta, Y_i / upmodels Y_j | X$$

Quiz: what model has Y^* observed & $P(\cdot)$ normal?

With observation mechanism:

$$y_i = \begin{cases}
1 & y^*_i \leq 0 \\
0 & y^*_i > 0
\end{cases}$$

If only y_i is observed, and Y^* is standardized logistic,

$$P(y^*_i | \mu_i) = STL(y^*_i | \mu_i) = \exp(y^*_i - \mu_i) / [1 + \exp(y^*_i - \mu_i)]^2$$

\rightsquigarrow logit model

Proof:

$$Pr(Y_i = 1 | \mu_i) = Pr(Y^*_i \leq 0) = \int_{-\infty}^{0} STL(y^*_i | \mu_i) \, dy^*_i = F_{stl}(0 | \mu_i) = \left[1 + \exp(-X_i \beta)\right]^{-1} \rightsquigarrow$$

The logit functional form
Logit Model Interpretation from Biology

- **Continuous unobserved variable**: Y^*. health, voting propensity
Logit Model Interpretation from Biology

- **Continuous unobserved variable:** Y^*. health, voting propensity
- **A model:** $Y_i^* \sim P(y_i^*|\mu_i)$, \[\mu_i = x_i\beta, \quad Y_i \perp Y_j|X \]
Logit Model Interpretation from Biology

- **Continuous unobserved variable**: \(Y^* \). Health, voting propensity
- **A model**: \(Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X \)
- **Quiz**: what model has \(Y^* \) observed & \(P(\cdot) \) normal?
Logit Model Interpretation from Biology

- **Continuous unobserved variable**: Y^*. Health, voting propensity
- **A model**: $Y_i^* \sim P(y_i^* \mid \mu_i)$, $\mu_i = x_i \beta$, $Y_i \perp Y_j \mid X$
- **Quiz**: what model has Y^* observed & $P(\cdot)$ normal?
- **With observation mechanism**: $y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases}$
Logit Model Interpretation from Biology

- **Continuous unobserved variable:** Y^*. health, voting propensity
- A model: $Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X$
- Quiz: what model has Y^* observed & $P(\cdot)$ normal?
- With observation mechanism: $y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases}$
- If only y_i is observed, and Y^* is standardized logistic,
Logit Model Interpretation from Biology

- Continuous unobserved variable: Y^*. health, voting propensity
- A model: $Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X$
- Quiz: what model has Y^* observed & $P(\cdot)$ normal?
- With observation mechanism: $y_i = \begin{cases}
1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\
0 & y_i^* > 0 \text{ if } i \text{ is dead}
\end{cases}$
- If only y_i is observed, and Y^* is standardized logistic,

$$P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2},$$
Logit Model Interpretation from Biology

- **Continuous unobserved variable:** Y^*. health, voting propensity
- **A model:** $Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i \beta, \quad Y_i \perp Y_j|X$
- **Quiz:** what model has Y^* observed & $P(\cdot)$ normal?
- **With observation mechanism:** $y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases}$
- **If only y_i is observed, and Y^* is standardized logistic,**

$$P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}$$
Logit Model Interpretation from Biology

- **Continuous unobserved variable:** Y^*. health, voting propensity
- **A model:** $Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X$
- **Quiz:** what model has Y^* observed & $P(\cdot)$ normal?
- **With observation mechanism:** $y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases}$
- **If only y_i is observed, and Y^* is standardized logistic,**

$$P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}$$

- **Proof:**
Logit Model Interpretation from Biology

- **Continuous unobserved variable:** Y^*. health, voting propensity
- **A model:** $Y^*_i \sim P(y^*_i|\mu_i)$, $\mu_i = x_i\beta$, $Y_i \perp Y_j|X$
- **Quiz:** what model has Y^* observed & $P(\cdot)$ normal?
- **With observation mechanism:** $y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases}$
- **If only y_i is observed, and Y^* is standardized logistic,**

$$P(y^*_i|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y^*_i - \mu_i)}{[1 + \exp(y^*_i - \mu_i)]^2}, \quad \sim \text{logit model}$$

- **Proof:** $Pr(Y_i = 1|\mu_i)$
Logit Model Interpretation from Biology

- Continuous unobserved variable: Y^*. health, voting propensity
- A model: $Y_i^* \sim P(y_i^*|\mu_i)$, $\mu_i = x_i\beta$, $Y_i \perp Y_j|X$
- Quiz: what model has Y^* observed & $P(\cdot)$ normal?

- With observation mechanism: $y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases}$
- If only y_i is observed, and Y^* is standardized logistic,

$$P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}$$

- Proof: $\Pr(Y_i = 1|\mu_i) = \Pr(Y_i^* \leq 0)$

Alternative Interpretations of Binary Models
Logit Model Interpretation from Biology

- Continuous unobserved variable: Y^*, health, voting propensity
- A model: $Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X$
- Quiz: what model has Y^* observed & $P(\cdot)$ normal?
- With observation mechanism: $y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases}$
- If only y_i is observed, and Y^* is standardized logistic,

\[
P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}
\]

- Proof: $Pr(Y_i = 1|\mu_i) = Pr(Y_i^* \leq 0) = \int_{-\infty}^{0} STL(y_i^*|\mu_i) \, dy_i^*$
Logit Model Interpretation from Biology

- **Continuous unobserved variable:** \(Y^* \). Health, voting propensity
- **A model:** \(Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X \)
- **Quiz:** what model has \(Y^* \) observed & \(P(\cdot) \) normal?
- **With observation mechanism:** \(y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\ 0 & y_i^* > 0 \text{ if } i \text{ is dead} \end{cases} \)
- **If only** \(y_i \) **is observed, and** \(Y^* \) **is standardized logistic,**

\[
P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}
\]

- **Proof:** \(\Pr(Y_i = 1|\mu_i) = \Pr(Y_i^* \leq 0) = \int_{-\infty}^{0} STL(y_i^*|\mu_i) \, dy_i^* = F_{stl}(0|\mu_i) \)
Logit Model Interpretation from Biology

- Continuous unobserved variable: \(Y^* \). health, voting propensity
- A model: \(Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X \)
- Quiz: what model has \(Y^* \) observed & \(P(\cdot) \) normal?
- With observation mechanism: \(y_i = \begin{cases}
1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\
0 & y_i^* > 0 \text{ if } i \text{ is dead}
\end{cases} \)
- If only \(y_i \) is observed, and \(Y^* \) is standardized logistic,
 \[
P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}
\]
 - Proof: \(\Pr(Y_i = 1|\mu_i) = \Pr(Y_i^* \leq 0) = \int_{-\infty}^{0} STL(y_i^*|\mu_i) \, dy_i^* = F_{stl}(0|\mu_i) = [1 + \exp(-X_i\beta)]^{-1} \)
Logit Model Interpretation from Biology

- **Continuous unobserved variable**: \(Y^* \). Health, voting propensity
- **A model**: \(Y_i^* \sim P(y_i^* | \mu_i), \quad \mu_i = x_i \beta, \quad Y_i \perp Y_j | X \)
- **Quiz**: what model has \(Y^* \) observed & \(P(\cdot) \) normal?
- With observation mechanism: \(y_i = \begin{cases}
1 & y_i^* \leq 0 \text{ if } i \text{ is alive} \\
0 & y_i^* > 0 \text{ if } i \text{ is dead}
\end{cases} \)
- If only \(y_i \) is observed, and \(Y^* \) is standardized logistic,

\[
P(y_i^* | \mu_i) = STL(y^* | \mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}
\]

- **Proof**:
 \(\Pr(Y_i = 1 | \mu_i) = \Pr(Y_i^* \leq 0) = \int_{-\infty}^{0} STL(y_i^* | \mu_i) \, dy_i^* = F_{stl}(0 | \mu_i) = [1 + \exp(-X_i \beta)]^{-1} \sim \text{The logit functional form} \)
Logit Model Interpretation from Biology

- **Continuous unobserved variable**: Y^*. health, voting propensity
- **A model**: $Y_i^* \sim P(y_i^*|\mu_i), \quad \mu_i = x_i\beta, \quad Y_i \perp Y_j|X$
- **Quiz**: what model has Y^* observed & $P(\cdot)$ normal?
- **With observation mechanism**: $y_i = \begin{cases} 1 & y_i^* \leq 0 \quad \text{if } i \text{ is alive} \\ 0 & y_i^* > 0 \quad \text{if } i \text{ is dead} \end{cases}$
- **If only y_i is observed, and Y^* is standardized logistic,**

$$P(y_i^*|\mu_i) = STL(y^*|\mu_i) = \frac{\exp(y_i^* - \mu_i)}{[1 + \exp(y_i^* - \mu_i)]^2}, \quad \sim \text{logit model}$$

- **Proof**: $\Pr(Y_i = 1|\mu_i) = \Pr(Y_i^* \leq 0) = \int_{-\infty}^{0} STL(y_i^*|\mu_i) dy_i^* = F_{stl}(0|\mu_i) = \left[1 + \exp(-X_i\beta) \right]^{-1} \sim \text{The logit functional form}$
Probit Model Interpretation from Biology

• Same setup as for logit, with one change

• Stochastic component:
 \[Y^* \sim P(Y_i^* \mid \mu_i) = N(Y_i^* \mid \mu_i, 1) \]

• Systematic component becomes
 \[\Pr(Y_i = 1 \mid \mu_i) = \int_{-\infty}^{0} N(Y_i^* \mid \mu_i, 1) \, dy^*_i = \Phi(X_i \beta) \]

• Interpretation:
 • One unit of \(Y^* \): one standard deviation
 • Interpret \(\beta \): regression coefficients of \(Y^* \) on \(X \)
 • Interpret \(\hat{\beta}_j \): what happens to \(Y^* \) on average (or \(\mu_i \) exactly) when \(X_j \) goes up by one unit, holding constant the other covariates
Probit Model Interpretation from Biology

• Same setup as for logit, with one change
Probit Model Interpretation from Biology

• Same setup as for logit, with one change
 • Stochastic component: \(Y^* \sim P(y^*_i|\mu_i) = N(y^*_i|\mu_i, 1) \)

• Interpretation:
 • One unit of \(Y^* \): one standard deviation
 • Interpret \(\beta \): regression coefficients of \(Y^* \) on \(X \)
 • Interpret \(\hat{\beta}_j \): what happens to \(Y^* \) on average (or \(\mu_i \) exactly) when \(X_j \) goes up by one unit, holding constant the other covariates
Probit Model Interpretation from Biology

- Same setup as for logit, with one change
 - **Stochastic component**: \(Y^* \sim P(y^*_i | \mu_i) = N(y^*_i | \mu_i, 1) \)
 - **Systematic component becomes**

\[
Pr(Y_i = 1|\mu) = \int_{-\infty}^{0} N(y^*_i | \mu_i, 1) \, dy^*_i = \Phi(X_i \beta)
\]
Probit Model Interpretation from Biology

- Same setup as for logit, with one change
 - Stochastic component: $Y^* \sim P(y_i^* | \mu_i) = N(y_i^* | \mu_i, 1)$
- Systematic component becomes

$$\Pr(Y_i = 1 | \mu) = \int_{-\infty}^{0} N(y_i^* | \mu_i, 1) \, dy_i^* = \Phi(X_i \beta)$$

- Interpretation:
Probit Model Interpretation from Biology

- Same setup as for logit, with one change
 - Stochastic component: \(Y^* \sim P(y^*_i|\mu_i) = N(y^*_i|\mu_i, 1) \)
 - Systematic component becomes

\[
\Pr(Y_i = 1|\mu) = \int_{-\infty}^{0} N(y^*_i|\mu_i, 1) dy^*_i = \Phi(X_i\beta)
\]

- Interpretation:
 - One unit of \(Y^* \): one standard deviation
Probit Model Interpretation from Biology

• Same setup as for logit, with one change
 • Stochastic component: \(Y^* \sim P(y^*|\mu_i) = N(y^*|\mu_i, 1) \)
• Systematic component becomes

\[
Pr(Y_i = 1|\mu) = \int_{-\infty}^{0} N(y^*_i|\mu_i, 1) dy^*_i = \Phi(X_i\beta)
\]

• Interpretation:
 • One unit of \(Y^* \): one standard deviation
 • Interpret \(\beta \): regression coefficients of \(Y^* \) on \(X \)
Probit Model Interpretation from Biology

• Same setup as for logit, with one change
 • Stochastic component: \(Y^* \sim P(y^*_i | \mu_i) = N(y^*_i | \mu_i, 1) \)
 • Systematic component becomes

\[
\Pr(Y_i = 1 | \mu) = \int_{-\infty}^{0} N(y^*_i | \mu_i, 1) \, dy^*_i = \Phi(X_i \beta)
\]

• Interpretation:
 • One unit of \(Y^* \): one standard deviation
 • Interpret \(\beta \): regression coefficients of \(Y^* \) on \(X \)
 • Interpret \(\hat{\beta}_j \): what happens to \(Y^* \) on average (or \(\mu_i \) exactly) when \(X_j \) goes up by one unit, holding constant the other covariates
Definitions:

- Utility for the Democratic candidate: \(U_D i \)
- Utility for the Republican candidate: \(U_R i \)
- Utility difference, propensity to vote Dem: \(Y* \equiv U_D i - U_R i \)

Same Observation mechanism:

\[y_i = \begin{cases}
1 & \text{if} \ y_i^* \leq 0 \\
0 & \text{if} \ y_i^* > 0
\end{cases} \]

Assumptions:

- \(U_D i /upmodels U_R i | X \)
- \(U_k i \sim P(U_k i | \eta_k i) \) for \(k = \{D, R\} \)

- If \(P(\cdot) \) is normal: \(\sim probit model \)
- If \(P(\cdot) \) is generalized extreme value: \(\sim logit model \)

Quiz: Of the three justifications for the same binary model, which do you prefer?

Quiz: When would you choose LPM or logit or probit?
Logit & Probit Interpretation from Economics

• Definitions:

Utility for the Democratic candidate: $U_D \ i$

Utility for the Republican candidate: $U_R \ i$

Utility difference, propensity to vote Dem: $Y^* \equiv U_D \ i - U_R \ i$

Same Observation mechanism:

$$y_i = \begin{cases}
1 & y^*_i \leq 0 \\
0 & y^*_i > 0
\end{cases}$$

• Assumptions:

$U_D \ i /upmodels U_R \ i \mid X$

$U_k \ i \sim P(U_k \ i \mid \eta_k \ i)$ for $k = \{D, R\}$

• If $P(\cdot)$ is normal: \hookrightarrow probit model

• If $P(\cdot)$ is generalized extreme value: \hookrightarrow logit model

• Quiz: Of the three justifications for the same binary model, which do you prefer?

• Quiz: When would you choose LPM or logit or probit?
Logit & Probit Interpretation from Economics

- **Definitions:**
 - Utility for the Democratic candidate: U_i^D
Logit & Probit Interpretation from Economics

• Definitions:
 • Utility for the Democratic candidate: U_i^D
 • Utility for the Republican candidate: U_i^R
Logit & Probit Interpretation from Economics

• **Definitions:**
 • Utility for the Democratic candidate: U_i^D
 • Utility for the Republican candidate: U_i^R
 • Utility difference, propensity to vote Dem: $Y^* \equiv U_i^D - U_i^R$

• Alternative Interpretations of Binary Models
Logit & Probit Interpretation from Economics

• Definitions:
 • Utility for the Democratic candidate: U^D_i
 • Utility for the Republican candidate: U^R_i
 • Utility difference, propensity to vote Dem: $Y^* \equiv U^D_i - U^R_i$
 • Same Observation mechanism: $y_i = \begin{cases} 1 & y^*_i \leq 0 \text{ if } i \text{ is Dem} \\ 0 & y^*_i > 0 \text{ if } i \text{ is Rep} \end{cases}$
Logit & Probit Interpretation from Economics

Definitions:
- Utility for the Democratic candidate: \(U^D_i \)
- Utility for the Republican candidate: \(U^R_i \)
- Utility difference, propensity to vote Dem: \(Y^* \equiv U^D_i - U^R_i \)
- Same Observation mechanism: \(y_i = \begin{cases}
1 & y^*_i \leq 0 \text{ if } i \text{ is Dem} \\
0 & y^*_i > 0 \text{ if } i \text{ is Rep}
\end{cases} \)

Assumptions:
- \(U^D_i / \text{upmodels} \)
- \(U^R_i / \text{models} \)
- If \(P(\cdot) \) is normal: \(\text{probit model} \)
- If \(P(\cdot) \) is generalized extreme value: \(\text{logit model} \)

Quiz: Of the three justifications for the same binary model, which do you prefer?

Quiz: When would you choose LPM or logit or probit?
Logit & Probit Interpretation from Economics

- **Definitions:**
 - Utility for the Democratic candidate: U_i^D
 - Utility for the Republican candidate: U_i^R
 - Utility difference, propensity to vote Dem: $Y^* \equiv U_i^D - U_i^R$

- **Same Observation mechanism:**
 $$y_i = \begin{cases}
 1 & y_i^* \leq 0 \text{ if } i \text{ is Dem} \\
 0 & y_i^* > 0 \text{ if } i \text{ is Rep}
 \end{cases}$$

- **Assumptions:**
 - $U_i^D \perp U_i^R | X$
Logit & Probit Interpretation from Economics

- **Definitions:**
 - Utility for the Democratic candidate: \(U^D_i \)
 - Utility for the Republican candidate: \(U^R_i \)
 - Utility difference, propensity to vote Dem: \(Y^* = U^D_i - U^R_i \)
 - Same Observation mechanism: \(y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is Dem} \\ 0 & y_i^* > 0 \text{ if } i \text{ is Rep} \end{cases} \)

- **Assumptions:**
 - \(U^D_i \perp U^R_i | X \)
 - \(U^k_i \sim P(U^k_i | \eta^k_i) \) for \(k = \{D, R\} \)
Logit & Probit Interpretation from Economics

- **Definitions:**
 - Utility for the Democratic candidate: U_i^D
 - Utility for the Republican candidate: U_i^R
 - Utility difference, propensity to vote Dem: $Y^* \equiv U_i^D - U_i^R$

- **Same Observation mechanism:**
 $$y_i = \begin{cases}
 1 & y_i^* \leq 0 \text{ if } i \text{ is Dem} \\
 0 & y_i^* > 0 \text{ if } i \text{ is Rep}
 \end{cases}$$

- **Assumptions:**
 - $U_i^D \perp U_i^R | X$
 - $U_i^k \sim P(U_i^k | \eta_i^k)$ for $k = \{D, R\}$

- **If P(·) is normal:** \sim probit model
Logit & Probit Interpretation from Economics

- **Definitions:**
 - Utility for the Democratic candidate: U_i^D
 - Utility for the Republican candidate: U_i^R
 - Utility difference, propensity to vote Dem: $Y^* ≡ U_i^D - U_i^R$
 - Same Observation mechanism: $y_i = \begin{cases}
 1 & y_i^* ≤ 0 \text{ if } i \text{ is Dem} \\
 0 & y_i^* > 0 \text{ if } i \text{ is Rep}
 \end{cases}$

- **Assumptions:**
 - $U_i^D \perp U_i^R | X$
 - $U_i^k \sim P(U_i^k | \eta_i^k)$ for $k = \{D, R\}$
 - If $P(\cdot)$ is normal: \sim probit model
 - If $P(\cdot)$ is generalized extreme value: \sim logit model
Logit & Probit Interpretation from Economics

• Definitions:
 - Utility for the Democratic candidate: \(U_i^D \)
 - Utility for the Republican candidate: \(U_i^R \)
 - Utility difference, propensity to vote Dem: \(Y^* \equiv U_i^D - U_i^R \)

• Same Observation mechanism: \(y_i = \begin{cases} 1 & y_i^* \leq 0 \text{ if } i \text{ is Dem} \\ 0 & y_i^* > 0 \text{ if } i \text{ is Rep} \end{cases} \)

• Assumptions:
 - \(U_i^D \perp U_i^R | X \)
 - \(U_i^k \sim P(U_i^k | \eta_i^k) \) for \(k = \{D, R\} \)
 - If \(P(\cdot) \) is normal: \(\sim \) probit model
 - If \(P(\cdot) \) is generalized extreme value: \(\sim \) logit model
 - Quiz: Of the three justifications for the same binary model, which do you prefer?
Logit & Probit Interpretation from Economics

Definitions:
- Utility for the Democratic candidate: U^D_i
- Utility for the Republican candidate: U^R_i
- Utility difference, propensity to vote Dem: $Y^* \equiv U^D_i - U^R_i$

Same Observation mechanism: $y_i = \begin{cases} 1 & y^*_i \leq 0 \text{ if } i \text{ is Dem} \\ 0 & y^*_i > 0 \text{ if } i \text{ is Rep} \end{cases}$

Assumptions:
- $U^D_i \perp\!\!\!\perp U^R_i | X$
- $U^k_i \sim P(U^k_i | \eta^k_i)$ for $k = \{D, R\}$

- If $P(\cdot)$ is normal: \sim probit model
- If $P(\cdot)$ is generalized extreme value: \sim logit model

Quiz: Of the three justifications for the same binary model, which do you prefer?

Quiz: When would you choose LPM or logit or probit?
Linear Probability, Logit, Probit Models

Interpreting Functional Forms

Alternative Interpretations of Binary Models

General Rules for Presenting and Interpreting Statistical Results
How Not to Present Statistical Results

• What do the each of the numbers mean?
• Why so much whitespace? Can you connect cols A and B?
• What's the star-gazing?
• Can any be interpreted as causal estimates?
• Can you compute a quantity of interest from these numbers?

General Rules for Presenting and Interpreting Statistical Results
How Not to Present Statistical Results

TABLE 1

Predicting Which Ethnic Group Conquered Most of Bosnia

Attention to Bosnia crisis	0.609**
Age	0.007**
Education	0.289**
Family income	0.151**
Race (non-White/White)	0.695**
Gender (female/male)	0.789**
Region (South/non-South)	0.076
Network coverage	0.000
Education × Time	−0.003*
Time in months	0.078**
Constant	−9.257**

Number	7,021
−2 log-likelihood	7,215.231
Goodness of fit	6,789.45
Cox & Snell R^2	0.212
Nagelkerke R^2	0.295
Overall correct classification (%)	73.96

NOTE: Unstandardized coefficients for logistic regression. Dependent variable is knowledge of which group conquered most of Bosnia.

*p ≤ .05, two-tailed. **p ≤ .01, two-tailed.
How Not to Present Statistical Results

- **What do the each of the numbers mean?**

TABLE 1

<table>
<thead>
<tr>
<th>Predicting Which Ethnic Group Conquered Most of Bosnia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention to Bosnia crisis</td>
<td>.609**</td>
</tr>
<tr>
<td>Age</td>
<td>.007**</td>
</tr>
<tr>
<td>Education</td>
<td>.289**</td>
</tr>
<tr>
<td>Family income</td>
<td>.151**</td>
</tr>
<tr>
<td>Race (non-White/White)</td>
<td>.695**</td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>.789**</td>
</tr>
<tr>
<td>Region (South/non-South)</td>
<td>.076</td>
</tr>
<tr>
<td>Network coverage</td>
<td>.000</td>
</tr>
<tr>
<td>Education × Time</td>
<td>−.003*</td>
</tr>
<tr>
<td>Time in months</td>
<td>.078**</td>
</tr>
<tr>
<td>Constant</td>
<td>−9.257**</td>
</tr>
<tr>
<td>Number</td>
<td>7,021</td>
</tr>
<tr>
<td>−2 log-likelihood</td>
<td>7,215.231</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>6,789.45</td>
</tr>
<tr>
<td>Cox & Snell R^2</td>
<td>.212</td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>.295</td>
</tr>
<tr>
<td>Overall correct classification (%)</td>
<td>73.96</td>
</tr>
</tbody>
</table>

NOTE: Unstandardized coefficients for logistic regression. Dependent variable is knowledge of which group conquered most of Bosnia.

*p ≤ .05, two-tailed. **p ≤ .01, two-tailed.
How Not to Present Statistical Results

- What do the each of the numbers mean?
- Why so much whitespace? Can you connect cols A and B?

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Predicting Which Ethnic Group Conquered Most of Bosnia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention to Bosnia crisis</td>
<td>0.609**</td>
</tr>
<tr>
<td>Age</td>
<td>0.007**</td>
</tr>
<tr>
<td>Education</td>
<td>0.289**</td>
</tr>
<tr>
<td>Family income</td>
<td>0.151**</td>
</tr>
<tr>
<td>Race (non-White/White)</td>
<td>0.695**</td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>0.789**</td>
</tr>
<tr>
<td>Region (South/non-South)</td>
<td>0.076</td>
</tr>
<tr>
<td>Network coverage</td>
<td>0.000</td>
</tr>
<tr>
<td>Education × Time</td>
<td>-0.003*</td>
</tr>
<tr>
<td>Time in months</td>
<td>0.078**</td>
</tr>
<tr>
<td>Constant</td>
<td>-9.257**</td>
</tr>
<tr>
<td>Number</td>
<td>7,021</td>
</tr>
<tr>
<td>−2 log-likelihood</td>
<td>7,215.231</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>6,789.45</td>
</tr>
<tr>
<td>Cox & Snell R^2</td>
<td>0.212</td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>0.295</td>
</tr>
<tr>
<td>Overall correct classification (%)</td>
<td>73.96</td>
</tr>
</tbody>
</table>

NOTE: Unstandardized coefficients for logistic regression. Dependent variable is knowledge of which group conquered most of Bosnia.

*p ≤ .05, two-tailed. **p ≤ .01, two-tailed.
How Not to Present Statistical Results

- What do the each of the numbers mean?
- Why so much whitespace? Can you connect cols A and B?
- What’s the star-gazing?
How Not to Present Statistical Results

- What do the each of the numbers mean?
- Why so much whitespace? Can you connect cols A and B?
- What’s the star-gazing?
- Can any be interpreted as causal estimates?

TABLE 1
Predicting Which Ethnic Group Conquered Most of Bosnia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention to Bosnia crisis</td>
<td>.609**</td>
</tr>
<tr>
<td>Age</td>
<td>.007**</td>
</tr>
<tr>
<td>Education</td>
<td>.289**</td>
</tr>
<tr>
<td>Family income</td>
<td>.151**</td>
</tr>
<tr>
<td>Race (non-White/White)</td>
<td>.695**</td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>.789**</td>
</tr>
<tr>
<td>Region (South/non-South)</td>
<td>.076</td>
</tr>
<tr>
<td>Network coverage</td>
<td>.000</td>
</tr>
<tr>
<td>Education × Time</td>
<td>−.003*</td>
</tr>
<tr>
<td>Time in months</td>
<td>.078**</td>
</tr>
<tr>
<td>Constant</td>
<td>−9.257**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>7,021</td>
</tr>
<tr>
<td>−2 log-likelihood</td>
<td>7,215.231</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>6,789.45</td>
</tr>
<tr>
<td>Cox & Snell R^2</td>
<td>.212</td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>.295</td>
</tr>
<tr>
<td>Overall correct classification (%)</td>
<td>73.96</td>
</tr>
</tbody>
</table>

NOTE: Unstandardized coefficients for logistic regression. Dependent variable is knowledge of which group conquered most of Bosnia.

*p ≤ .05, two-tailed. **p ≤ .01, two-tailed.
How Not to Present Statistical Results

- What do the each of the numbers mean?
- Why so much whitespace? Can you connect cols A and B?
- What’s the star-gazing?
- Can any be interpreted as causal estimates?
- Can you compute a quantity of interest from these numbers?

TABLE 1
Predicting Which Ethnic Group Conquered Most of Bosnia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention to Bosnia crisis</td>
<td>.609**</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>.007**</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>.289**</td>
<td></td>
</tr>
<tr>
<td>Family income</td>
<td>.151**</td>
<td></td>
</tr>
<tr>
<td>Race (non-White/White)</td>
<td>.695**</td>
<td></td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>.789**</td>
<td></td>
</tr>
<tr>
<td>Region (South/non-South)</td>
<td>.076</td>
<td></td>
</tr>
<tr>
<td>Network coverage</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Education × Time</td>
<td>-.003*</td>
<td></td>
</tr>
<tr>
<td>Time in months</td>
<td>.078**</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-9.257**</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>7,021</td>
<td></td>
</tr>
<tr>
<td>-2 log-likelihood</td>
<td>7,215.231</td>
<td></td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>6,789.45</td>
<td></td>
</tr>
<tr>
<td>Cox & Snell R^2</td>
<td>.212</td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>.295</td>
<td></td>
</tr>
<tr>
<td>Overall correct classification (%)</td>
<td>73.96</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Unstandardized coefficients for logistic regression. Dependent variable is knowledge of which group conquered most of Bosnia.
*p ≤ .05, two-tailed. **p ≤ .01, two-tailed.
How Not to Present Statistical Results

- What do the each of the numbers mean?
- Why so much whitespace? Can you connect cols A and B?
- What’s the star-gazing?
- Can any be interpreted as causal estimates?
- Can you compute a quantity of interest from these numbers?
- This is bad, not rare

General Rules for Presenting and Interpreting Statistical Results
The Goals of Interpretation and Presentation

1. Convey precise estimates of quantities of interest
2. Include measures of uncertainty
3. Require little specialized knowledge to understand
4. Exclude superfluous information (e.g., long lists of coefficients no one understands, star gazing, silly summary stats, too many decimal places)

For example: Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

Try to satisfy someone like both me and my mom & dad

The Goals of Interpretation and Presentation

- Statistical presentations should
 1. Convey precise estimates of quantities of interest
 2. Include measures of uncertainty
 3. Require little specialized knowledge to understand
 4. Exclude superfluous information (e.g., long lists of coefficients no one understands, star gazing, silly summary stats, too many decimal places)

- For example:
 Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

- Try to satisfy someone like both me and my mom & dad

- Reading:
The Goals of Interpretation and Presentation

• Statistical presentations should
 1. Convey precise estimates of quantities of interest

For example:
Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

• Try to satisfy someone like both me and my mom & dad

The Goals of Interpretation and Presentation

• Statistical presentations should
 1. Convey precise estimates of quantities of interest
 2. Include measures of uncertainty

For example:

Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

• Try to satisfy someone like both me and my mom & dad

Reading:
The Goals of Interpretation and Presentation

• **Statistical presentations should**
 1. Convey precise estimates of quantities of interest
 2. Include measures of uncertainty
 3. Require little specialized knowledge to understand

For example:
Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

Try to satisfy someone like both me and my mom & dad

The Goals of Interpretation and Presentation

- **Statistical presentations should**
 1. Convey precise estimates of quantities of interest
 2. Include measures of uncertainty
 3. Require little specialized knowledge to understand
 4. Exclude superfluous information (e.g., long lists of coefficients no one understands, star gazing, silly summary stats, too many decimal places)

For example:

Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

Try to satisfy someone like both me and my mom & dad

Reading:

King, Tomz, Wittenberg, "Making the Most of Statistical Analyses: Improving Interpretation and Presentation" American Journal of Political Science
The Goals of Interpretation and Presentation

• **Statistical presentations should**
 1. Convey precise estimates of quantities of interest
 2. Include measures of uncertainty
 3. Require little specialized knowledge to understand
 4. Exclude superfluous information (e.g., long lists of coefficients no one understands, star gazing, silly summary stats, too many decimal places)

• **For example:** Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500
The Goals of Interpretation and Presentation

• **Statistical presentations should**
 1. Convey precise estimates of quantities of interest
 2. Include measures of uncertainty
 3. Require little specialized knowledge to understand
 4. Exclude superfluous information (e.g., long lists of coefficients no one understands, star gazing, silly summary stats, too many decimal places)

• **For example:** Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

• **Try to satisfy someone like both me and my mom & dad**
The Goals of Interpretation and Presentation

- **Statistical presentations should**
 1. Convey precise estimates of quantities of interest
 2. Include measures of uncertainty
 3. Require little specialized knowledge to understand
 4. Exclude superfluous information (e.g., long lists of coefficients no one understands, star gazing, silly summary stats, too many decimal places)

- **For example:** Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus about $500

- **Try to satisfy someone like both** me and my mom & dad

Simulating Quantities of Interest

1. Simulate β and α due to estimation uncertainty (because of inadequacies in your research design: $n < \infty$).
2. Simulate Y (given sims of α and β), representing fundamental uncertainty (due to the nature of nature!).
3. Calculate quantity of interest (given sims of Y).
Simulating Quantities of Interest

• Quiz: What do quantity of interest simulations get us?
Simulating Quantities of Interest

- Quiz: What do quantity of interest simulations get us?
 - Summarize everything we know and don’t know about the QOI
Simulating Quantities of Interest

• **Quiz: What do quantity of interest simulations get us?**
 • Summarize everything we know and don’t know about the QOI
 • Complete flexibility of presentation
Simulating Quantities of Interest

• **Quiz: What do quantity of interest simulations get us?**
 • Summarize everything we know and don’t know about the QOI
 • Complete flexibility of presentation
 • A great test of whether we understand the model
Simulating Quantities of Interest

- **Quiz: What do quantity of interest simulations get us?**
 - Summarize everything we know and don’t know about the QOI
 - Complete flexibility of presentation
 - A great test of whether we understand the model

- **Goal: Simulate quantities of interest from the model**

\[Y_i \sim f(\theta_i, \alpha) \]

\[\theta_i = g(x_i, \beta) \]

General Rules for Presenting and Interpreting Statistical Results
Simulating Quantities of Interest

- **Quiz:** What do quantity of interest simulations get us?
 - Summarize everything we know and don’t know about the QOI
 - Complete flexibility of presentation
 - A great test of whether we understand the model

- **Goal:** Simulate quantities of interest from the model

\[Y_i \sim f(\theta_i, \alpha) \quad \text{stochastic} \]
Simulating Quantities of Interest

• Quiz: What do quantity of interest simulations get us?
 • Summarize everything we know and don’t know about the QOI
 • Complete flexibility of presentation
 • A great test of whether we understand the model

• Goal: Simulate quantities of interest from the model

\[Y_i \sim f(\theta_i, \alpha) \quad \text{stochastic} \]
\[\theta_i = g(x_i, \beta) \quad \text{systematic} \]
Simulating Quantities of Interest

• Quiz: What do quantity of interest simulations get us?
 • Summarize everything we know and don’t know about the QOI
 • Complete flexibilty of presentation
 • A great test of whether we understand the model

• Goal: Simulate quantities of interest from the model

\[Y_i \sim f(\theta_i, \alpha) \quad \text{stochastic} \]
\[\theta_i = g(x_i, \beta) \quad \text{systematic} \]

• How to simulate QOIs
Simulating Quantities of Interest

• Quiz: What do quantity of interest simulations get us?
 • Summarize everything we know and don’t know about the QOI
 • Complete flexibility of presentation
 • A great test of whether we understand the model

• Goal: Simulate quantities of interest from the model

\[Y_i \sim f(\theta_i, \alpha) \quad \text{stochastic} \]
\[\theta_i = g(x_i, \beta) \quad \text{systematic} \]

• How to simulate QOIs
 1. Simulate \(\beta \) and \(\alpha \) due to estimation uncertainty (because of inadequacies in your research design: \(n < \infty \).)
Simulating Quantities of Interest

- **Quiz:** What do quantity of interest simulations get us?
 - Summarize everything we know and don’t know about the QOI
 - Complete flexibility of presentation
 - A great test of whether we understand the model
- **Goal:** Simulate quantities of interest from the model

\[
Y_i \sim f(\theta_i, \alpha) \quad \text{stochastic}
\]
\[
\theta_i = g(x_i, \beta) \quad \text{systematic}
\]

- **How to simulate QOIs**
 1. Simulate β and α due to *estimation uncertainty* (because of inadequacies in your research design: $n < \infty$.)
 2. Simulate Y (given sims of α and β), representing *fundamental uncertainty* (due to the nature of nature!)
Simulating Quantities of Interest

- **Quiz: What do quantity of interest simulations get us?**
 - Summarize everything we know and don’t know about the QOI
 - Complete flexibility of presentation
 - A great test of whether we understand the model

- **Goal: Simulate quantities of interest from the model**

 \[
 Y_i \sim f(\theta_i, \alpha) \quad \text{stochastic} \\
 \theta_i = g(x_i, \beta) \quad \text{systematic}
 \]

- **How to simulate QOIs**
 1. Simulate \(\beta \) and \(\alpha \) due to estimation uncertainty (because of inadequacies in your research design: \(n < \infty \)).
 2. Simulate \(Y \) (given sims of \(\alpha \) and \(\beta \)), representing fundamental uncertainty (due to the nature of nature!).
 3. Calculate quantity of interest (given sims of \(Y \)).
Simulate Parameters

Goal:
Random draws of parameters from sampling distribution (aka posterior with a flat prior)

How to:
1. Maximize likelihood function wrt \(\gamma = \text{vec}(\beta, \alpha) \) (once)
2. Record \(\hat{\gamma} \) and \(\hat{V}(\hat{\gamma}) \)
3. Draw \(\tilde{\gamma} \) from the multivariate normal (many times)
\(\tilde{\gamma} \sim N(\hat{\gamma}, \hat{V}(\hat{\gamma})) \)
Simulate Parameters

- **Goal:** Random draws of parameters from sampling distribution (aka posterior with a flat prior)
Simulate Parameters

- **Goal:** Random draws of parameters from sampling distribution (aka posterior with a flat prior)
- **How to:**
 1. Maximize likelihood function $\gamma = \text{vec}(\beta, \alpha)$ (once)
 2. Record $\hat{\gamma}$ and $\hat{\Sigma}($)$
 3. Draw $\tilde{\gamma}$ from the multivariate normal ($\tilde{\gamma} \sim N(\hat{\gamma}, \hat{\Sigma}($) $)$
Simulate Parameters

- **Goal:** Random draws of parameters from sampling distribution (aka posterior with a flat prior)
- **How to:**
 1. Maximize likelihood function wrt $\gamma = \text{vec}(\beta, \alpha)$ (once)
Simulate Parameters

- **Goal**: Random draws of parameters from sampling distribution (aka posterior with a flat prior)
- **How to**:
 1. Maximize likelihood function wrt $\gamma = \text{vec}(\beta, \alpha)$ (once)
 2. Record $\hat{\gamma}$ and $\hat{V}(\hat{\gamma})$
Simulate Parameters

- **Goal:** Random draws of parameters from sampling distribution (aka posterior with a flat prior)
- **How to:**
 1. Maximize likelihood function wrt $\gamma = \text{vec}(\beta, \alpha)$ (once)
 2. Record $\hat{\gamma}$ and $\hat{V}(\hat{\gamma})$
 3. Draw $\tilde{\gamma}$ from the multivariate normal (many times)

$$\tilde{\gamma} \sim N(\hat{\gamma}, \hat{V}(\hat{\gamma}))$$
Simulating Expected v. Predicted Values

• Definitions
 - Predicted: draws of Y that could in principle be observed
 - Expected: draws of distribution features, such as $E(Y)$

• Sources of variability
 - Predicted: estimation and fundamental uncertainty
 - Expected: estimation only (average over fundamental)

• Quiz: As $n \to \infty$, does the variance go to zero?
 - Predicted: no
 - Expected: yes

• Example
 - Predicted: Pr(Temperature $<$ 32 ○) tomorrow
 - Expected: Pr(Average Temperature $<$ 32 ○) tomorrow
Simulating Expected v. Predicted Values

- Definitions

- Predicted: draws of Y that could in principle be observed

- Expected: draws of distribution features, such as $E(Y)$

- Sources of variability

 - Predicted: estimation and fundamental uncertainty

 - Expected: estimation only (average over fundamental)

- Quiz: As $n \to \infty$, does the variance go to zero?

 - Predicted: no

 - Expected: yes

- Example

 - Predicted: $P(Temperature < 32\degree)$ tomorrow

 - Expected: $P(Average\ Temperature < 32\degree)$ tomorrow
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted:** draws of Y that could in principle be observed

- **Sources of variability**
 - **Predicted:** estimation and fundamental uncertainty
 - **Expected:** estimation only (average over fundamental)

- **Quiz:** As $n \to \infty$, does the variance go to zero?
 - **Predicted:** no
 - **Expected:** yes

- **Example**
 - **Predicted:** $\Pr(Temperature < 32\degree C)$ tomorrow
 - **Expected:** $\Pr(Average\ Temperature < 32\degree C)$ tomorrow
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted**: draws of Y that could in principle be observed
 - **Expected**: draws of distribution features, such as $E(Y)$

Sources of variability
- **Predicted**: estimation and fundamental uncertainty
- **Expected**: estimation only (average over fundamental)

Quiz: As $n \to \infty$, does the variance go to zero?
- **Predicted**: no
- **Expected**: yes

Example
- **Predicted**: $\Pr(\text{Temperature} < 32^\circ\text{C} \text{ tomorrow})$
- **Expected**: $\Pr(\text{Average Temperature} < 32^\circ\text{C} \text{ tomorrow})$
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted:** draws of Y that could in principle be observed
 - **Expected:** draws of distribution features, such as $E(Y)$

- **Sources of variability**

- Quiz: As $n \to \infty$, does the variance go to zero?
 - **Predicted:** no
 - **Expected:** yes
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted**: draws of Y that could in principle be observed
 - **Expected**: draws of distribution features, such as $E(Y)$

- **Sources of variability**
 - **Predicted**: estimation and fundamental uncertainty

Quiz: As $n \to \infty$, does the variance go to zero?

- **Predicted**: no
- **Expected**: yes

Example
- **Predicted**: $\Pr(\text{Temperature} < 32\circ)$ tomorrow
- **Expected**: $\Pr(\text{Average Temperature} < 32\circ)$ tomorrow
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted**: draws of Y that could in principle be observed
 - **Expected**: draws of distribution features, such as $E(Y)$

- **Sources of variability**
 - **Predicted**: estimation and fundamental uncertainty
 - **Expected**: estimation only (average over fundamental)

Quiz: As $n \to \infty$, does the variance go to zero?
- **Predicted**: no
- **Expected**: yes

Example
- **Predicted**: $\Pr(Temperature < 32\,\circ)$ tomorrow
- **Expected**: $\Pr(Average\, Temperature < 32\,\circ)$ tomorrow
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted:** draws of Y that could in principle be observed
 - **Expected:** draws of distribution features, such as $E(Y)$

- **Sources of variability**
 - **Predicted:** estimation and fundamental uncertainty
 - **Expected:** estimation only (average over fundamental)

- **Quiz:** As $n \to \infty$, does the variance go to zero?
Simulating Expected v. Predicted Values

• Definitions
 • Predicted: draws of Y that could in principle be observed
 • Expected: draws of distribution features, such as $E(Y)$

• Sources of variability
 • Predicted: estimation and fundamental uncertainty
 • Expected: estimation only (average over fundamental)

• Quiz: As $n \rightarrow \infty$, does the variance go to zero?
 • Predicted:
Simulating Expected v. Predicted Values

• **Definitions**
 - **Predicted**: draws of Y that could in principle be observed
 - **Expected**: draws of distribution features, such as $E(Y)$

• **Sources of variability**
 - **Predicted**: estimation and fundamental uncertainty
 - **Expected**: estimation only (average over fundamental)

• **Quiz**: As $n \rightarrow \infty$, does the variance go to zero?
 - **Predicted**: no
Simulating Expected v. Predicted Values

• Definitions
 • Predicted: draws of Y that could in principle be observed
 • Expected: draws of distribution features, such as $E(Y)$

• Sources of variability
 • Predicted: estimation and fundamental uncertainty
 • Expected: estimation only (average over fundamental)

• Quiz: As $n \to \infty$, does the variance go to zero?
 • Predicted: no
 • Expected:
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted**: draws of Y that could in principle be observed
 - **Expected**: draws of distribution features, such as $E(Y)$

- **Sources of variability**
 - **Predicted**: estimation and fundamental uncertainty
 - **Expected**: estimation only (average over fundamental)

- **Quiz**: As $n \to \infty$, does the variance go to zero?
 - **Predicted**: no
 - **Expected**: yes
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted:** draws of Y that could in principle be observed
 - **Expected:** draws of distribution features, such as $E(Y)$

- **Sources of variability**
 - **Predicted:** estimation and fundamental uncertainty
 - **Expected:** estimation only (average over fundamental)

- **Quiz:** As $n \to \infty$, does the variance go to zero?
 - **Predicted:** no
 - **Expected:** yes

- **Example**
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted:** draws of \(Y \) that could in principle be observed
 - **Expected:** draws of distribution features, such as \(E(Y) \)

- **Sources of variability**
 - **Predicted:** estimation and fundamental uncertainty
 - **Expected:** estimation only (average over fundamental)

- **Quiz:** As \(n \to \infty \), does the variance go to zero?
 - **Predicted:** no
 - **Expected:** yes

- **Example**
 - **Predicted:** \(\Pr(\text{Temperature} < 32^\circ) \) tomorrow
Simulating Expected v. Predicted Values

- **Definitions**
 - **Predicted:** draws of Y that could in principle be observed
 - **Expected:** draws of distribution features, such as $E(Y)$

- **Sources of variability**
 - **Predicted:** estimation and fundamental uncertainty
 - **Expected:** estimation only (average over fundamental)

- **Quiz:** As $n \to \infty$, does the variance go to zero?
 - **Predicted:** no
 - **Expected:** yes

- **Example**
 - **Predicted:** $\Pr(\text{Temperature} < 32^\circ\text{C})$ tomorrow
 - **Expected:** $\Pr(\text{Average Temperature} < 32^\circ\text{C})$ tomorrow
Simulating Predicted Values

Predicted values can be for:
1. Forecasts: about the future
2. Farcasts: about some area for which you have no \(y \)
3. Nowcasts: about the current data (perhaps to reproduce it to see whether it fits)

Repeat once for each random draw of \(\tilde{y} \):
1. Draw one value of \(\tilde{\gamma} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \sim N(\hat{\gamma}, \hat{V}(\hat{\gamma})) \)
2. Define vector \(X_c \), which defines the predicted value to compute
3. Extract simulated \(\tilde{\beta} \) from \(\tilde{\gamma} \); compute \(\tilde{\theta}_c = g(X_c, \tilde{\beta}) \)
4. Simulate outcome variable \(\tilde{Y}_c \sim f(\tilde{\theta}_c, \tilde{\alpha}) \)

Quiz: What can we do with many sims of \(\tilde{y} \)?
- E.g.: histogram, average, variance, percentile values, etc.
Simulating Predicted Values

- Predicted values can be for
 1. Forecasts: about the future
 2. Farcasts: about some area for which you have no y
 3. Nowcasts: about the current data (perhaps to reproduce it to see whether it fits)

- Repeat once for each random draw of \tilde{y}
 1. Draw one value of $\tilde{\gamma} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \sim \mathcal{N}(\hat{\gamma}, \hat{V}(\hat{\gamma}))$
 2. Define vector X_c, which defines the predicted value to compute
 3. Extract simulated $\tilde{\beta}$ from $\tilde{\gamma}$; compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$
 4. Simulate outcome variable $\tilde{Y}_c \sim f(\tilde{\theta}_c, \tilde{\alpha})$

- Quiz: What can we do with many sims of \tilde{y}?
 - E.g.: histogram, average, variance, percentile values, etc.
Simulating Predicted Values

- Predicted values can be for
 1. **Forecasts**: about the future
Simulating Predicted Values

• **Predicted values can be for**
 1. **Forecasts**: about the future
 2. **Farcasts**: about some area for which you have no y
Simulating Predicted Values

• **Predicted values can be for**
 1. **Forecasts:** about the future
 2. **Farcasts:** about some area for which you have no \(y \)
 3. **Nowcasts:** about the current data (perhaps to reproduce it to see whether it fits)
Simulating Predicted Values

- **Predicted values can be for**
 1. **Forecasts**: about the future
 2. **Farcasts**: about some area for which you have no \(y \)
 3. **Nowcasts**: about the current data (perhaps to reproduce it to see whether it fits)

- **Repeat once for each random draw of \(\tilde{y} \)**

- Quiz: What can we do with many sims of \(\tilde{y} \)?
 - E.g.: histogram, average, variance, percentile values, etc.
Simulating Predicted Values

• Predicted values can be for
 1. Forecasts: about the future
 2. Farcasts: about some area for which you have no y
 3. Nowcasts: about the current data (perhaps to reproduce it to see whether it fits)

• Repeat once for each random draw of \hat{y}
 1. Draw one value of $\hat{y} = \text{vec}(\hat{\beta}, \hat{\alpha}) \sim N(\hat{y}, \hat{V}(\hat{y}))$

Quiz: What can we do with many sims of \hat{y}?
E.g.:
- histogram
- average
- variance
- percentile values, etc.
Simulating Predicted Values

- **Predicted values can be for**
 1. **Forecasts**: about the future
 2. **Farcasts**: about some area for which you have no \(y \)
 3. **Nowcasts**: about the current data (perhaps to reproduce it to see whether it fits)

- **Repeat once for each random draw of \(\tilde{y} \)**
 1. Draw one value of \(\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \sim N(\hat{\gamma}, \hat{V}(\hat{y})) \)
 2. Define vector \(X_c \), which defines the predicted value to compute
Simulating Predicted Values

• **Predicted values can be for**
 1. **Forecasts:** about the future
 2. **Farcasts:** about some area for which you have no \(y \)
 3. **Nowcasts:** about the current data (perhaps to reproduce it to see whether it fits)

• **Repeat once for each random draw of \(\tilde{y} \)**
 1. Draw one value of \(\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \sim N(\hat{y}, \hat{V}(\hat{y})) \)
 2. Define vector \(X_c \), which defines the predicted value to compute
 3. Extract simulated \(\tilde{\beta} \) from \(\tilde{y} \); compute \(\tilde{\theta}_c = g(X_c, \tilde{\beta}) \)
Simulating Predicted Values

• Predicted values can be for
 1. Forecasts: about the future
 2. Farcasts: about some area for which you have no \(y \)
 3. Nowcasts: about the current data (perhaps to reproduce it to see whether it fits)

• Repeat once for each random draw of \(\tilde{y} \)
 1. Draw one value of \(\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \sim \mathcal{N}(\hat{\theta}, \hat{V}(\hat{\theta})) \)
 2. Define vector \(X_c \), which defines the predicted value to compute
 3. Extract simulated \(\tilde{\beta} \) from \(\tilde{y} \); compute \(\tilde{\theta}_c = g(X_c, \tilde{\beta}) \)
 4. Simulate outcome variable \(\tilde{Y}_c \sim f(\tilde{\theta}_c, \tilde{\alpha}) \)
Simulating Predicted Values

- Predicted values can be for
 1. **Forecasts**: about the future
 2. **Farcasts**: about some area for which you have no y
 3. **Nowcasts**: about the current data (perhaps to reproduce it to see whether it fits)

- Repeat once for each random draw of \tilde{y}
 1. Draw one value of $\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \sim N(\hat{\gamma}, \hat{V}(\hat{\gamma}))$
 2. Define vector X_c, which defines the predicted value to compute
 3. Extract simulated $\tilde{\beta}$ from \tilde{y}; compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$
 4. Simulate outcome variable $\tilde{Y}_c \sim f(\tilde{\theta}_c, \tilde{\alpha})$

- Quiz: What can we do with many sims of \tilde{y}?
Simulating Predicted Values

- **Predicted values can be for**
 1. **Forecasts:** about the future
 2. **Farcasts:** about some area for which you have no \(y \)
 3. **Nowcasts:** about the current data (perhaps to reproduce it to see whether it fits)

- **Repeat once for each random draw of \(\tilde{y} \)**
 1. Draw one value of \(\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \sim N(\hat{\gamma}, \hat{V}(\hat{\gamma})) \)
 2. Define vector \(X_c \), which defines the predicted value to compute
 3. Extract simulated \(\tilde{\beta} \) from \(\tilde{y} \); compute \(\tilde{\theta}_c = g(X_c, \tilde{\beta}) \)
 4. Simulate outcome variable \(\tilde{Y}_c \sim f(\tilde{\theta}_c, \tilde{\alpha}) \)

- **Quiz:** What can we do with many sims of \(\tilde{y} \)?
- **E.g.:** histogram, average, variance, percentile values, etc.
Simulating Expected Values: Algorithm

1. Draw one simulated expected value:
 (a) Draw one value of $\tilde{\gamma} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)
 (b) Choose one value for each explanatory variable (\(X_c\) is a vector)
 (c) Compute \(\tilde{\theta}_c = g(X_c, \tilde{\beta})\), given the one simulated \(\tilde{\beta}\) from \(\tilde{\gamma}\)
 (d) Draw \(m\) sims of the outcome \(\tilde{Y}(k)\) (\(k = 1, \ldots, m\)) (simulating fundamental uncertainty from stochastic component \(f(\tilde{\theta}_c, \tilde{\alpha})\))
 (e) Average over fundamental uncertainty: average \(m\) simulations gives one simulated expected value \(\tilde{E}(Y_c) = \frac{\sum_{k=1}^{m} \tilde{Y}(k)}{m}\)

2. Repeat algorithm \(M\) times leaving estimation uncertainty

3. Compute QOIs:
 histogram, average (point estimate), SE, CI

Interpretation
• When \(m = 1\): same as predicted values.
• With large \(m\): better fundamental uncertainty approximation
• When \(E(Y_c) = \theta_c\): we may skip steps d–e. E.g., simulating \(\pi_i\) in logit model. If you're unsure, do it anyway!
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**

(a) Draw one value of $\tilde{\gamma} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)

(b) Choose one value for each explanatory variable (X_c is a vector)

(c) Compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$, given the one simulated $\tilde{\beta}$ from $\tilde{\gamma}$

(d) Draw m sims of the outcome $\tilde{Y}_c(k)$ ($k = 1, \ldots, m$) (simulating fundamental uncertainty from stochastic component $f(\tilde{\theta}_c, \tilde{\alpha})$)

(e) Average over fundamental uncertainty: average m simulations gives one simulated expected value $\tilde{E}(Y_c) = \frac{\sum_{k=1}^m \tilde{Y}_c(k)}{m}$

2. Repeat algorithm M times leaving estimation uncertainty

3. Compute QOIs: histogram, average (point estimate), SE, CI

Interpretation

- When $m = 1$: same as predicted values.
- With large m: better fundamental uncertainty approximation
- When $E(Y_c) = \theta_c$: we may skip steps d–e. E.g., simulating π_i in logit model. If you're unsure, do it anyway!
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**
 (a) **Draw one** value of \(\hat{\gamma} = \text{vec}(\hat{\beta}, \hat{\alpha}) \) (estimation uncertainty)
Simulating Expected Values: Algorithm

1. Draw one simulated expected value:
 (a) Draw one value of $\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)
 (b) Choose one value for each explanatory variable (X_c is a vector)
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**

 (a) Draw one value of $\tilde{\gamma} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)

 (b) Choose one value for each explanatory variable (X_c is a vector)

 (c) Compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$, given the one simulated $\tilde{\beta}$ from $\tilde{\gamma}$

2. Repeat algorithm M times leaving estimation uncertainty

3. Compute QOIs: histogram, average (point estimate), SE, CI

Interpretation

• When $m = 1$: same as predicted values.

• With large m: better fundamental uncertainty approximation

• When $E(Y_c) = \theta_c$: we may skip steps d–e. E.g., simulating π_i in logit model. If you're unsure, do it anyway!
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**

 (a) Draw one value of $\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)

 (b) Choose one value for each explanatory variable (X_c is a vector)

 (c) Compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$, given the one simulated $\tilde{\beta}$ from \tilde{y}

 (d) Draw m sims of the outcome $\tilde{Y}_c^{(k)}$ ($k = 1, ..., m$) (simulating fundamental uncertainty from stochastic component $f(\tilde{\theta}_c, \tilde{\alpha})$)
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**

 (a) Draw one value of $\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)

 (b) Choose one value for each explanatory variable (X_c is a vector)

 (c) Compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$, given the one simulated $\tilde{\beta}$ from \tilde{y}

 (d) Draw m sims of the outcome $\tilde{Y}_c^{(k)}$ ($k = 1, ..., m$) (simulating fundamental uncertainty from stochastic component $f(\tilde{\theta}_c, \tilde{\alpha})$)

 (e) Average over fundamental uncertainty: average m simulations gives one simulated expected value $\tilde{E}(Y_c) = \sum_{k=1}^{m} \tilde{Y}_c^{(k)}/m$
Simulating Expected Values: Algorithm

1. Draw one simulated expected value:
 (a) Draw one value of $\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)
 (b) Choose one value for each explanatory variable (X_c is a vector)
 (c) Compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$, given the one simulated $\tilde{\beta}$ from \tilde{y}
 (d) Draw m sims of the outcome $\tilde{Y}_c^{(k)}$ ($k = 1, ..., m$) (simulating fundamental uncertainty from stochastic component $f(\tilde{\theta}_c, \tilde{\alpha})$)
 (e) Average over fundamental uncertainty: average m simulations gives one simulated expected value $\tilde{E}(Y_c) = \sum_{k=1}^{m} \tilde{Y}_c^{(k)} / m$

2. Repeat algorithm M times leaving estimation uncertainty
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**
 (a) Draw one value of \(\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \) (estimation uncertainty)
 (b) Choose one value for each explanatory variable (\(X_c \) is a vector)
 (c) Compute \(\tilde{\theta}_c = g(X_c, \tilde{\beta}) \), given the one simulated \(\tilde{\beta} \) from \(\tilde{y} \)
 (d) Draw \(m \) sims of the outcome \(\tilde{Y}_c^{(k)} \) (\(k = 1, \ldots, m \)) (simulating fundamental uncertainty from stochastic component \(f(\tilde{\theta}_c, \tilde{\alpha}) \))
 (e) Average over fundamental uncertainty: average \(m \) simulations gives one simulated expected value \(\tilde{E}(Y_c) = \sum_{k=1}^{m} \tilde{Y}_c^{(k)}/m \)

2. **Repeat algorithm \(M \) times** leaving estimation uncertainty

3. **Compute QOIs:** histogram, average (point estimate), SE, CI
Simulating Expected Values: Algorithm

1. Draw one simulated expected value:
 (a) Draw one value of \(\tilde{\gamma} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \) (estimation uncertainty)
 (b) Choose one value for each explanatory variable (\(X_c \) is a vector)
 (c) Compute \(\tilde{\theta}_c = g(X_c, \tilde{\beta}) \), given the one simulated \(\tilde{\beta} \) from \(\tilde{\gamma} \)
 (d) Draw \(m \) sims of the outcome \(\tilde{Y}_c^{(k)} \) (\(k = 1, \ldots, m \)) (simulating fundamental uncertainty from stochastic component \(f(\tilde{\theta}_c, \tilde{\alpha}) \))
 (e) Average over fundamental uncertainty: average \(m \) simulations gives one simulated expected value \(\tilde{E}(Y_c) = \sum_{k=1}^{m} \tilde{Y}_c^{(k)}/m \)

2. Repeat algorithm \(M \) times leaving estimation uncertainty

3. Compute QOIs: histogram, average (point estimate), SE, CI

Interpretation

• When \(m = 1 \): same as predicted values.
• With large \(m \): better fundamental uncertainty approximation
• When \(E(Y_c) = \tilde{\theta}_c \): we may skip steps d–e. E.g., simulating \(\pi_i \) in logit model. If you’re unsure, do it anyway!
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**
 (a) Draw one value of $\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)
 (b) Choose one value for each explanatory variable (X_c is a vector)
 (c) Compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$, given the one simulated $\tilde{\beta}$ from \tilde{y}
 (d) Draw m sims of the outcome $\tilde{Y}_c^{(k)} (k = 1, ..., m)$ (simulating fundamental uncertainty from stochastic component $f(\tilde{\theta}_c, \tilde{\alpha})$)
 (e) Average over fundamental uncertainty: average m simulations gives one simulated expected value $\tilde{E}(Y_c) = \sum_{k=1}^{m} \tilde{Y}_c^{(k)}/m$

2. Repeat algorithm M times leaving estimation uncertainty

3. Compute QOIs: histogram, average (point estimate), SE, CI

Interpretation

- **When $m = 1$:** same as predicted values.
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**

 (a) Draw one value of $\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha})$ (estimation uncertainty)

 (b) Choose one value for each explanatory variable (X_c is a vector)

 (c) Compute $\tilde{\theta}_c = g(X_c, \tilde{\beta})$, given the one simulated $\tilde{\beta}$ from \tilde{y}

 (d) Draw m sims of the outcome $\tilde{Y}_c^{(k)}$ ($k = 1, \ldots, m$) (simulating fundamental uncertainty from stochastic component $f(\tilde{\theta}_c, \tilde{\alpha})$)

 (e) Average over fundamental uncertainty: average m simulations gives one simulated expected value $\tilde{E}(Y_c) = \sum_{k=1}^{m} \tilde{Y}_c^{(k)}/m$

2. Repeat algorithm M times leaving estimation uncertainty

3. Compute QOIs: histogram, average (point estimate), SE, CI

Interpretation

- **When $m = 1$:** same as predicted values.
- **With large m:** better fundamental uncertainty approximation
Simulating Expected Values: Algorithm

1. **Draw one simulated expected value:**

 (a) Draw one value of \(\tilde{y} = \text{vec}(\tilde{\beta}, \tilde{\alpha}) \) (estimation uncertainty)

 (b) Choose one value for each explanatory variable (\(X_c \) is a vector)

 (c) Compute \(\tilde{\theta}_c = g(\tilde{X}_c, \tilde{\beta}) \), given the one simulated \(\tilde{\beta} \) from \(\tilde{y} \)

 (d) Draw \(m \) sims of the outcome \(\tilde{Y}_c^{(k)} \) (\(k = 1, \ldots, m \)) (simulating fundamental uncertainty from stochastic component \(f(\tilde{\theta}_c, \tilde{\alpha}) \))

 (e) Average over fundamental uncertainty: average \(m \) simulations gives one simulated expected value \(\tilde{E}(Y_c) = \sum_{k=1}^{m} \tilde{Y}_c^{(k)}/m \)

2. **Repeat algorithm \(M \) times** leaving estimation uncertainty

3. **Compute QOIs:** histogram, average (point estimate), SE, CI

Interpretation

- **When \(m = 1 \):** same as predicted values.
- **With large \(m \):** better fundamental uncertainty approximation
- **When \(E(Y_c) = \theta_c \):** we may skip steps d–e. E.g., simulating \(\pi_i \) in logit model. If you’re unsure, do it anyway!
Simulating First Differences

1. Choose vectors X_s, the starting point, X_e, the ending point.
2. Apply the expected value algorithm twice, once for X_s and X_e.
3. Take the difference in the two estimated expected values.

Repeat M times.

Quiz: which QOIs do we want here?

To save computation time, and improve approximation: Reuse the same simulated $\tilde{\beta}$ for both.
Simulating First Differences

- Draw *one* simulated first difference
Simulating First Differences

• **Draw one simulated first difference**
 1. Choose vectors X_s, the starting point, X_e, the ending point.
Simulating First Differences

- **Draw one simulated first difference**
 1. Choose vectors X_s, the starting point, X_e, the ending point.
 2. Apply the expected value algorithm twice, once for X_s and X_e.
Simulating First Differences

• **Draw one simulated first difference**
 1. Choose vectors X_s, the starting point, X_e, the ending point.
 2. Apply the expected value algorithm twice, once for X_s and X_e
 3. Take the difference in the two estimated expected values
Simulating First Differences

• **Draw one simulated first difference**
 1. Choose vectors X_s, the starting point, X_e, the ending point.
 2. Apply the expected value algorithm twice, once for X_s and X_e
 3. Take the difference in the two estimated expected values

• **Repeat M times**
Simulating First Differences

- **Draw one simulated first difference**
 1. Choose vectors X_s, the starting point, X_e, the ending point.
 2. Apply the expected value algorithm twice, once for X_s and X_e.
 3. Take the difference in the two estimated expected values.

- **Repeat M times**

- **Quiz: which QOIs do we want here?**
Simulating First Differences

- **Draw one simulated first difference**
 1. Choose vectors X_s, the starting point, and X_e, the ending point.
 2. Apply the expected value algorithm twice, once for X_s and X_e.
 3. Take the difference in the two estimated expected values.

- **Repeat M times**

- **Quiz: which QOIs do we want here?**

- **To save computation time, and improve approximation:**
 Reuse the same simulated $\tilde{\beta}$ for both.
Tricks for Simulating Parameters

• Simulate all parameters together (in γ), including ancillary parameters (unless you know they are orthogonal).

• Advantages of reparameterization to unbounded scale:
 $\hat{\gamma}$ converges more quickly in n to multivariate normal. (MLEs don't change, but the posteriors and SEs do.)
 \maximization algorithm works faster without constraints.

• How to reparameterize:
 $\sigma^2 = e^{\eta}$ (i.e., wherever you see σ^2, in your log-likelihood function, replace it with e^{η}).
 For a probability, $\pi = \left[1 + e^{-\eta}\right]^{-1}$ (logit transformation).
 For $-1 \leq \rho \leq 1$, use $\rho = \frac{e^{2\eta} - 1}{e^{2\eta} + 1}$ (Fisher’s Z trans).

• In each case, η is unbounded: estimate it, simulate from it, and reparameterize back to the scale you care about.
Tricks for Simulating Parameters

• **Simulate all parameters together** (in γ), including ancillary parameters (unless you know they are orthogonal)
Tricks for Simulating Parameters

- Simulate all parameters together (in γ), including ancillary parameters (unless you know they are orthogonal)
- Advantages of Reparameterization to unbounded scale
Tricks for Simulating Parameters

- **Simulate all parameters together** (in γ), including ancillary parameters (unless you know they are orthogonal)
- **Advantages of Reparameterization to unbounded scale**
 - $\hat{\gamma}$ converges more quickly in n to multivariate normal. (MLEs don’t change, but the posteriors and SEs do.)
Tricks for Simulating Parameters

- **Simulate all parameters together** (in γ), including ancillary parameters (unless you know they are orthogonal)
- **Advantages of Reparameterization to unbounded scale**
 - $\hat{\gamma}$ converges more quickly in n to multivariate normal. (MLEs don’t change, but the posteriors and SEs do.)
 - maximization algorithm works faster without constraints
Tricks for Simulating Parameters

- **Simulate all parameters together** (in γ), including ancillary parameters (unless you know they are orthogonal)
- **Advantages of Reparameterization to unbounded scale**
 - $\hat{\gamma}$ converges more quickly in n to multivariate normal. (MLEs don’t change, but the posteriors and SEs do.)
 - maximization algorithm works faster without constraints
- **How to reparameterize:**
 - $\sigma^2 = e^{\eta}$ (i.e., wherever you see σ^2, in your log-likelihood function, replace it with e^{η})
 - For a probability, $\pi = \left[1 + e^{-\eta}\right]^{-1}$ (logit transformation)
 - For $-1 \leq \rho \leq 1$, use $\rho = \frac{e^{2\eta} - 1}{e^{2\eta} + 1}$ (Fisher’s Z trans)
 - In each case, η is unbounded: estimate it, simulate from it, and reparameterize back to the scale you care about.
Tricks for Simulating Parameters

• **Simulate all parameters together** (in \(\gamma \)), including ancillary parameters (unless you know they are orthogonal)

• **Advantages of Reparameterization to unbounded scale**
 • \(\hat{\gamma} \) converges more quickly in \(n \) to multivariate normal. (MLEs don’t change, but the posteriors and SEs do.)
 • maximization algorithm works faster without constraints

• **How to reparameterize:**
 • \(\sigma^2 = e^\eta \) (i.e., wherever you see \(\sigma^2 \), in your log-likelihood function, replace it with \(e^\eta \))
Tricks for Simulating Parameters

- **Simulate all parameters together** (in γ), including ancillary parameters (unless you know they are orthogonal)
- **Advantages of Reparameterization to unbounded scale**
 - $\hat{\gamma}$ converges more quickly in n to multivariate normal. (MLEs don’t change, but the posteriors and SEs do.)
 - maximization algorithm works faster without constraints
- **How to reparameterize:**
 - $\sigma^2 = e^\eta$ (i.e., wherever you see σ^2, in your log-likelihood function, replace it with e^η)
 - For a probability, $\pi = \left[1 + e^{-\eta}\right]^{-1}$ (logit transformation)
Tricks for Simulating Parameters

- **Simulate all parameters together** (in γ), including ancillary parameters (unless you know they are orthogonal)

- **Advantages of Reparameterization to unbounded scale**
 - $\hat{\gamma}$ converges more quickly in n to multivariate normal. (MLEs don’t change, but the posteriors and SEs do.)
 - maximization algorithm works faster without constraints

- **How to reparameterize:**
 - $\sigma^2 = e^\eta$ (i.e., wherever you see σ^2, in your log-likelihood function, replace it with e^η)
 - For a probability, $\pi = [1 + e^{-\eta}]^{-1}$ (logit transformation)
 - For $-1 \leq \rho \leq 1$, use $\rho = (e^{2\eta} - 1)/(e^{2\eta} + 1)$ (Fisher’s Z trans)
Tricks for Simulating Parameters

- **Simulate all parameters together** (in γ), including ancillary parameters (unless you know they are orthogonal)
- **Advantages of Reparameterization to unbounded scale**
 - $\hat{\gamma}$ converges more quickly in n to multivariate normal. (MLEs don’t change, but the posteriors and SEs do.)
 - maximization algorithm works faster without constraints
- **How to reparameterize:**
 - $\sigma^2 = e^\eta$ (i.e., wherever you see σ^2, in your log-likelihood function, replace it with e^η)
 - For a probability, $\pi = [1 + e^{-\eta}]^{-1}$ (logit transformation)
 - For $-1 \leq \rho \leq 1$, use $\rho = (e^{2\eta} - 1)/(e^{2\eta} + 1)$ (Fisher’s Z trans)
 - In each case, η is unbounded: estimate it, simulate from it, and reparameterize back to the scale you care about.
Tricks for Simulating Quantities of Interest

• Compute QOIs from sims of Y (unless you're sure)

• Simulating functions of Y

• If analyzing $\ln(Y)$, simulate $\ln(Y)$ and apply inverse function $\exp(\ln(Y))$ to reveal Y

• The wrong way: Regress $\ln(Y)$ on X, compute predicted value $\hat{\ln}(Y)$ and exponentiate

• Its wrong because the regression estimates $E[\ln(Y)]$, but $E[\ln(Y)] = \ln[E(Y)]$, so $\exp(E[\ln(Y)]) \neq Y$

• More generally, $E[g(Y)] = g(E(Y))$, unless g is linear

• Check approximation error: Run algorithm twice, check precision. If it's not enough for your tables, increase sims.

• Increase speed: Analytical calculations & other tricks easily done in C, Clarity for Stata and Zeil for R
Tricks for Simulating Quantities of Interest

- Compute QOIs from sims of Y (unless you’re sure)
Tricks for Simulating Quantities of Interest

- Compute QOIs from sims of Y (unless you’re sure)
- Simulating functions of Y

Check approximation error:
Run algorithm twice, check precision. If it’s not enough for your tables, increase sims.

Increase speed:
Analytical calculations & other tricks
Easily done in Clary for Stata and Zeig for R
Tricks for Simulating Quantities of Interest

- **Compute QOIs from sims of** Y (unless you’re sure)
- **Simulating functions of** Y
 - If analyzing $\ln(Y)$, simulate $\ln(Y)$ & apply inverse function $\exp(\ln(Y))$ to reveal Y
Tricks for Simulating Quantities of Interest

- **Compute QOIs from sims of** Y *(unless you’re sure)*
- **Simulating functions of** Y
 - If analyzing $\ln(Y)$, simulate $\ln(Y)$ & apply inverse function $\exp(\ln(Y))$ to reveal Y
 - The wrong way: Regress $\ln(Y)$ on X, compute predicted value $\ln(Y)$ and exponentiate

General Rules for Presenting and Interpreting Statistical Results
Tricks for Simulating Quantities of Interest

- **Compute QOIs from sims of** Y (unless you’re sure)
- **Simulating functions of** Y
 - If analyzing $\ln(Y)$, simulate $\ln(Y)$ & apply inverse function $\exp(\ln(Y))$ to reveal Y
 - The wrong way: Regress $\ln(Y)$ on X, compute predicted value $\hat{\ln(Y)}$ and exponentiate
 - Its wrong because the regression estimates $E[\ln(Y)]$, but $E[\ln(Y)] \neq \ln[E(Y)]$, so $\exp(E[\ln(Y)]) \neq Y$
Tricks for Simulating Quantities of Interest

- **Compute QOIs from sims of** Y *(unless you’re sure)*
- **Simulating functions of** Y
 - If analyzing $\ln(Y)$, simulate $\ln(Y)$ & apply inverse function $\exp(\ln(Y))$ to reveal Y
 - The wrong way: Regress $\ln(Y)$ on X, compute predicted value $\hat{\ln(Y)}$ and exponentiate
 - Its wrong because the regression estimates $E[\ln(Y)]$, but $E[\ln(Y)] \neq \ln[E(Y)]$, so $\exp(E[\ln(Y)]) \neq Y$
 - More generally, $E(g[Y]) \neq g[E(Y)]$, unless $g[\cdot]$ is linear

Check approximation error:
Run algorithm twice, check precision. If it’s not enough for your tables, increase sims.

Increase speed:
Analytical calculations & other tricks

Easily done in **C** for Stata and **Zelig** for R
Tricks for Simulating Quantities of Interest

- **Compute QOIs from sims of Y** (unless you’re sure)
- **Simulating functions of Y**
 - If analyzing $\ln(Y)$, simulate $\ln(Y)$ & apply inverse function $\exp(\ln(Y))$ to reveal Y
 - The wrong way: Regress $\ln(Y)$ on X, compute predicted value $\ln(\hat{Y})$ and exponentiate
 - It’s wrong because the regression estimates $E[\ln(Y)]$, but $E[\ln(Y)] \neq \ln[E(Y)]$, so $\exp(E[\ln(Y)]) \neq Y$
 - More generally, $E(g[Y]) \neq g[E(Y)]$, unless $g[\cdot]$ is linear
- **Check approximation error**: Run algorithm twice, check precision. If it’s not enough for your tables, increase sims.
Tricks for Simulating Quantities of Interest

- **Compute QOIs from sims of** \(Y \) (unless you’re sure)
- **Simulating functions of** \(Y \)
 - If analyzing \(\ln(Y) \), simulate \(\ln(Y) \) & apply inverse function \(\exp(\ln(Y)) \) to reveal \(Y \)
 - The wrong way: Regress \(\ln(Y) \) on \(X \), compute predicted value \(\hat{\ln}(Y) \) and exponentiate
 - Its wrong because the regression estimates \(E[\ln(Y)] \), but \(E[\ln(Y)] \neq \ln[E(Y)] \), so \(\exp(E[\ln(Y)]) \neq Y \)
 - More generally, \(E(g[Y]) \neq g[E(Y)] \), unless \(g[\cdot] \) is linear
- **Check approximation error**: Run algorithm twice, check precision. If it’s not enough for your tables, increase sims.
- **Increase speed**: Analytical calculations & other tricks
Tricks for Simulating Quantities of Interest

- Compute QOIs from sims of Y (unless you’re sure)
- Simulating functions of Y
 - If analyzing $\ln(Y)$, simulate $\ln(Y)$ & apply inverse function $\exp(\ln(Y))$ to reveal Y
 - The wrong way: Regress $\ln(Y)$ on X, compute predicted value $\hat{\ln(Y)}$ and exponentiate
 - It's wrong because the regression estimates $E[\ln(Y)]$, but $E[\ln(Y)] \neq \ln[E(Y)]$, so $\exp(E[\ln(Y)]) \neq Y$
 - More generally, $E(g[Y]) \neq g[E(Y)]$, unless $g[\cdot]$ is linear
- Check approximation error: Run algorithm twice, check precision. If it’s not enough for your tables, increase sims.
- Increase speed: Analytical calculations & other tricks
- Easily done in Clarify for Stata and Zelig for R
Replication of Rosenstone and Hansen

General Rules for Presenting and Interpreting Statistical Results
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

• Logit of turnout on Age, Age², Education, Income, and Race
• Logit of turnout on Age, Age^2, Education, Income, and Race
• QOI: effect of age on $\text{Pr}(\text{vote}|X)$, given Income & Race
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age^2, Education, Income, and Race
- QOI: effect of age on Pr(vote|X), given Income & Race
- Use $M = 1000$ and compute 99% CI
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age^2, Education, Income, and Race
- QOI: effect of age on $\Pr(\text{vote}|X)$, given Income & Race
- Use $M = 1000$ and compute 99% CI

![Figure 1: Probability of Voting by Age](chart.png)
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age^2, Education, Income, and Race
- QOI: effect of age on $\Pr(\text{vote}|X)$, given Income & Race
- Use $M = 1000$ and compute 99% CI

- Set age=24, education=high school, income=average, Race=white
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age2, Education, Income, and Race
- QOI: effect of age on Pr(vote|X), given Income & Race
- Use $M = 1000$ and compute 99% CI

- Set age=24, education=high school, income=average, Race=white
- Run logistic regression
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age^2, Education, Income, and Race
- QOI: effect of age on Pr(vote|X), given Income & Race
- Use \(M = 1000 \) and compute 99% CI

- Set age=24, education=high school, income=average, Race=white
- Run logistic regression
- Simulate 1000 \(\tilde{\beta} \)'s
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age2, Education, Income, and Race
- QOI: effect of age on $\Pr(\text{vote}|X)$, given Income & Race
- Use $M = 1000$ and compute 99% CI

Set age=24, education=high school, income=average, Race=white
Run logistic regression
Simulate 1000 $\tilde{\beta}$’s
Compute 1000 $\tilde{\eta}_i = [1 + e^{-x_i\tilde{\beta}}]^{-1}$

![Figure 1: Probability of Voting by Age](image)
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age\(^2\), Education, Income, and Race
- QOI: effect of age on Pr(vote|X), given Income & Race
- Use \(M = 1000 \) and compute 99% CI

- Set age=24, education=high school, income=average, Race=white
- Run logistic regression
- Simulate 1000 \(\tilde{\beta} \)'s
- Compute 1000 \(\tilde{\eta}_i = [1 + e^{-x_i\tilde{\beta}}]^{-1} \)
- Sort in numerical order
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age2, Education, Income, and Race
- QOI: effect of age on $\Pr(\text{vote}|X)$, given Income & Race
- Use $M = 1000$ and compute 99% CI

- Set age=24, education=high school, income=average, Race=white
- Run logistic regression
- Simulate 1000 $\tilde{\beta}$’s
- Compute 1000 $\tilde{\eta}_i = [1 + e^{-x_i\tilde{\beta}}]^{-1}$
- Sort in numerical order
- 99% CI: 5th and 995th values

Figure 1 Probability of Voting by Age

Vertical bars indicate 99-percent confidence intervals
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, \(\text{Age}^2 \), Education, Income, and Race
- QOI: effect of age on \(\Pr(\text{vote}|X) \), given Income & Race
- Use \(M = 1000 \) and compute 99% CI

- Set age=24, education=high school, income=average, Race=white
- Run logistic regression
- Simulate 1000 \(\tilde{\beta} \)'s
- Compute 1000 \(\tilde{\eta}_i = \left[1 + e^{-x_i\tilde{\beta}} \right]^{-1} \)
- Sort in numerical order
- 99% CI: 5th and 995th values
- Plot vertical line at age=24 (the CI)
Replication of Rosenstone and Hansen
by King, Tomz and Wittenberg (2000)

- Logit of turnout on Age, Age2, Education, Income, and Race
- QOI: effect of age on Pr(vote|X), given Income & Race
- Use $M = 1000$ and compute 99% CI

- Set age=24, education=high school, income=average, Race=white
- Run logistic regression
- Simulate 1000 $\tilde{\beta}$’s
- Compute 1000 $\tilde{\eta}_i = \left[1 + e^{-x_i\tilde{\beta}}\right]^{-1}$
- Sort in numerical order
- 99% CI: 5th and 995th values
- Plot vertical line at age=24 (the CI)
- Repeat for other ages and college
Replication of Garrett (King, Tomz and Wittenberg 2000)

Dependent variable: Government Spending as % of GDP

Key causal var: left-labor power (high = solid line; low = dashed)

Garrett only reported the 8 point estimates.

Quiz: What new information do we learn here?

Left-labor power: only has effect with high exposure to trade or capital mobility

Quiz: How can we summarize this with less real estate?
Replication of Garrett (King, Tomz and Wittenberg 2000)

Dependent variable: Government Spending as % of GDP

Key causal var: left-labor power (high = solid line; low = dashed)

Garrett only reported the 8 point estimates.

Quiz: What new information do we learn here?

Left-labor power: only has effect with high exposure to trade or capital mobility

Quiz: How can we summarize this with less real estate?
Replication of Garrett (King, Tomz and Wittenberg 2000)

- Dependent variable: Government Spending as % of GDP

General Rules for Presenting and Interpreting Statistical Results
Replication of Garrett (King, Tomz and Wittenberg 2000)

- Dependent variable: Government Spending as % of GDP
- Key causal var: left-labor power (high = solid line; low = dashed)
Replication of Garrett (King, Tomz and Wittenberg 2000)

- Dependent variable: Government Spending as % of GDP
- Key causal var: left-labor power (high = solid line; low = dashed)
- Garrett only reported the 8 point estimates.
• Dependent variable: Government Spending as % of GDP
• Key causal var: left-labor power (high = solid line; low = dashed)
• Garrett only reported the 8 point estimates.
• Quiz: What new information do we learn here?
Replication of Garrett (King, Tomz and Wittenberg 2000)

- Dependent variable: Government Spending as % of GDP
- Key causal var: left-labor power (high = solid line; low = dashed)
- Garrett only reported the 8 point estimates.
- Quiz: What new information do we learn here?
- Left-labor power: only has effect with high exposure to trade or capital mobility
Replication of Garrett (King, Tomz and Wittenberg 2000)

- Dependent variable: Government Spending as % of GDP
- Key causal var: left-labor power (high = solid line; low = dashed)
- Garrett only reported the 8 point estimates.
- Quiz: What new information do we learn here?
- Left-labor power: only has effect with high exposure to trade or capital mobility
- Quiz: How can we summarize this with less real estate?